

Decapod CookBook

	Introduction

	Install and configure Decapod

	Data models

	Manage users and roles

	Deploy a cluster

	Ceph monitoring

	Use the Decapod CLI

	Backup and restore procedures

	Deploy an operating system on a Ceph node

	Supported Ceph packages

	Playbook plugins

	Upgrade Guide

	Debug snapshot

	Admin service

	Decapod API

Introduction

Decapod is a tool that simplifies the deployment and lifecycle management of
Ceph. Using Decapod, you can deploy clusters with best known practices, add
new nodes to a cluster, remove them, and purge a cluster, if required. Decapod
provides a simple API to manage cluster configurations. Also, you can use the
Decapod web UI to easily manage your clusters.

Decapod uses Ansible with the ceph-ansible community project to deliver
the best user experience. For tasks, you can use plugins that encapsulate the
appropriate settings. Also, you can customize the configuration before
execution, if required.

Decapod provides the following functionality:

	Deploying Ceph on remote nodes

	Adding and removing Ceph roles on machine (for example, deploying an OSD or
removing a monitor)

	Purging a cluster

	Upgrading and updating clusters

	Managing partitions on disk devices for Ceph

However, Decapod does not cover:

	Providing a server for PXE

	Managing DHCP

	Managing networks by all means

	Managing host OS packages

	Deploying OS

	Managing partitions on disks that are not related to Ceph

See also

	Ceph [http://ceph.com/]

	Ansible [https://www.ansible.com/]

	ceph-ansible community project [https://github.com/ceph/ceph-ansible]

	Decapod API reference [http://decapod.readthedocs.io/en/latest/api/index.html]

Install and configure Decapod

This section describes how to install and configure Decapod and includes the
following topics:

	Prerequisites

	Install Decapod

	Configure Docker Compose

	Decapod configuration files
	ansible_ssh_keyfile.pem

	SSL certificates

	config.yaml

	mongodb.pem

	Propagation to containers

	config.yaml file
	Settings
	common

	api

	controller

	cron

	db

	plugins

	logging

	Authentication backends
	Native authentication backend

	Keystone authentication backend

Prerequisites

You can build Decapod on any commodity node that has Linux or OS X. However,
prior to installing Decapod, verify that your software configurations meet the
following requirements:

	Install git and make.

	Install Docker Engine as described in Install Docker Engine [https://docs.docker.com/engine/installation].
Pay attention to the DNS configuration [https://docs.docker.com/engine/installation/linux/ubuntulinux/#/configure-a-dns-server-for-use-by-docker].

	Install Docker Compose version 1.6 or later as described in
Install Docker Compose [https://docs.docker.com/compose/install].

	Verify that your machine has access to the external network.

Install Decapod

The installation procedure contains the following steps:

	Building the development or production images. In the development version,
the SSH private keys, SSL certificate, and configuration file are
pre-generated and placed in the containerization/files directory of the
source code. To build a production version, you need to have your own
configuration file, an SSH private key for Ansible, and an SSL certificate
for the web front end.

	Moving the Docker images to the target node.

	Configuring Docker Compose.

	Running the Docker containers.

	Running migrations. If you run Decapod for the first time or upgrade from
the previous version, apply migrations. This operation is idempotent and you
may execute it safely at any time. If a migration was applied, Decapod will
not reapply it again. On the first boot, migrations are required to obtain
the root user. Otherwise, Decapod will start with an empty database and,
therefore, without the capability to perform any operations.

Before you install Decapod, verify that you have completed the tasks described
in Prerequisites.

To install Decapod:

	Clone the source code repository:

$ git clone --recurse-submodules \
 https://github.com/Mirantis/ceph-lcm.git decapod
$ cd decapod

	In the repository, check the available versions using Git tag. To
select a specific version, use:

git checkout {tag} && git submodule update --init --recursive

	Build Decapod depending on your needs:

Important

In case if you do not have an access to private repository to
fetch base images, then you need to set upstreams for base images:

$ make docker_registry_use_dockerhub

If you decide to switch back, do following:

$ make docker_registry_use_internal_ci

	Development version. To build the development images, run:

$ make build_containers_dev

	Production version.

	Copy the repository files to the top level directory and build the
images:

make copy_example_keys

	Build the production version:

$ make build_containers

Note

The copy_example_keys target allows the build process to
override the default Ubuntu and Debian repositories.

	Move the Docker images to the target node.

Note

In future, it will be possible to run Decapod services on different
machines. However, it is assumed that you have only one machine with
Docker and Docker Compose. There may be one build machine and another
production one. If you have such a diversity, use the Docker registry to
manage Decapod images or dump/load them manually.

Use the following commands to dump Docker images, copy to a remote host,
and load them:

$ make dump_images
$ rsync -a output/images/ <remote_machine>:images/
$ scp docker-compose.yml <remote_machine>:docker-compose.yml
$ ssh <remote_machine>
$ cd images
$ for i in $(\ls -1 *.bz2); do docker load -i "$i"; done;
$ cd ..
$ docker-compose up

	Configure Docker Compose as described in
Configure Docker Compose and
Decapod configuration files.

	Run Docker Compose:

$ docker-compose up

To daemonize the process:

$ docker-compose up -d

To stop the detached process:

$ docker-compose down

For details, see Overview of the Docker Compose CLI [https://docs.docker.com/compose/reference/overview/].

	If you run Decapod for the first time or upgrade from the previous version,
run migrations:

Example:

$ docker-compose exec admin decapod-admin migration apply
2017-02-06 11:11:48 [DEBUG] (lock.py:118): Lock applying_migrations was acquire by locker 76eef103-0878-42c2-9727-b9e83e52db47
2017-02-06 11:11:48 [DEBUG] (lock.py:183): Prolong thread for locker applying_migrations of lock 76eef103-0878-42c2-9727-b9e83e52db47 has been started. Thread MongoLock prolonger 76eef103-0878-42c2-9727-b9e83e52db47 for applying_migrations, ident 140167584413440
2017-02-06 11:11:48 [INFO] (migration.py:123): Run migration 0000_index_models.py
2017-02-06 11:11:48 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0000_index_models.py. Pid 49
2017-02-06 11:11:53 [DEBUG] (lock.py:164): Lock applying_migrations was proloned by locker 76eef103-0878-42c2-9727-b9e83e52db47.
2017-02-06 11:11:56 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0000_index_models.py has been finished. Exit code 0
2017-02-06 11:11:56 [INFO] (migration.py:277): Save result of 0000_index_models.py migration (result MigrationState.ok)
2017-02-06 11:11:56 [INFO] (migration.py:123): Run migration 0001_insert_default_role.py
2017-02-06 11:11:56 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0001_insert_default_role.py. Pid 56
2017-02-06 11:11:58 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0001_insert_default_role.py has been finished. Exit code 0
2017-02-06 11:11:58 [INFO] (migration.py:277): Save result of 0001_insert_default_role.py migration (result MigrationState.ok)
2017-02-06 11:11:58 [INFO] (migration.py:123): Run migration 0002_insert_default_user.py
2017-02-06 11:11:58 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0002_insert_default_user.py. Pid 64
2017-02-06 11:11:58 [DEBUG] (lock.py:164): Lock applying_migrations was proloned by locker 76eef103-0878-42c2-9727-b9e83e52db47.
2017-02-06 11:11:59 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0002_insert_default_user.py has been finished. Exit code 0
2017-02-06 11:11:59 [INFO] (migration.py:277): Save result of 0002_insert_default_user.py migration (result MigrationState.ok)
2017-02-06 11:11:59 [INFO] (migration.py:123): Run migration 0003_native_ttl_index.py
2017-02-06 11:11:59 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0003_native_ttl_index.py. Pid 192
2017-02-06 11:12:00 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0003_native_ttl_index.py has been finished. Exit code 0
2017-02-06 11:12:00 [INFO] (migration.py:277): Save result of 0003_native_ttl_index.py migration (result MigrationState.ok)
2017-02-06 11:12:00 [INFO] (migration.py:123): Run migration 0004_migrate_to_native_ttls.py
2017-02-06 11:12:00 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0004_migrate_to_native_ttls.py. Pid 200
2017-02-06 11:12:02 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0004_migrate_to_native_ttls.py has been finished. Exit code 0
2017-02-06 11:12:02 [INFO] (migration.py:277): Save result of 0004_migrate_to_native_ttls.py migration (result MigrationState.ok)
2017-02-06 11:12:02 [INFO] (migration.py:123): Run migration 0005_index_cluster_data.py
2017-02-06 11:12:02 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0005_index_cluster_data.py. Pid 208
2017-02-06 11:12:03 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0005_index_cluster_data.py has been finished. Exit code 0
2017-02-06 11:12:03 [INFO] (migration.py:277): Save result of 0005_index_cluster_data.py migration (result MigrationState.ok)
2017-02-06 11:12:03 [INFO] (migration.py:123): Run migration 0006_create_cluster_data.py
2017-02-06 11:12:03 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0006_create_cluster_data.py. Pid 216
2017-02-06 11:12:03 [DEBUG] (lock.py:164): Lock applying_migrations was proloned by locker 76eef103-0878-42c2-9727-b9e83e52db47.
2017-02-06 11:12:04 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0006_create_cluster_data.py has been finished. Exit code 0
2017-02-06 11:12:04 [INFO] (migration.py:277): Save result of 0006_create_cluster_data.py migration (result MigrationState.ok)
2017-02-06 11:12:04 [INFO] (migration.py:123): Run migration 0007_add_external_id_to_user.py
2017-02-06 11:12:04 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0007_add_external_id_to_user.py. Pid 224
2017-02-06 11:12:06 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0007_add_external_id_to_user.py has been finished. Exit code 0
2017-02-06 11:12:06 [INFO] (migration.py:277): Save result of 0007_add_external_id_to_user.py migration (result MigrationState.ok)
2017-02-06 11:12:06 [DEBUG] (lock.py:202): Prolong thread for locker applying_migrations of lock 76eef103-0878-42c2-9727-b9e83e52db47 has been stopped. Thread MongoLock prolonger 76eef103-0878-42c2-9727-b9e83e52db47 for applying_migrations, ident 140167584413440
2017-02-06 11:12:06 [DEBUG] (lock.py:124): Try to release lock applying_migrations by locker 76eef103-0878-42c2-9727-b9e83e52db47.
2017-02-06 11:12:06 [DEBUG] (lock.py:140): Lock applying_migrations was released by locker 76eef103-0878-42c2-9727-b9e83e52db47.

You can get a list of applied migrations with list all option.

Example:

$ docker-compose exec admin decapod-admin migration list all
[applied] 0000_index_models.py
[applied] 0001_insert_default_role.py
[applied] 0002_insert_default_user.py
[applied] 0003_native_ttl_index.py
[applied] 0004_migrate_to_native_ttls.py
[applied] 0005_index_cluster_data.py
[applied] 0006_create_cluster_data.py
[applied] 0007_add_external_id_to_user.py

And the details of the certain migration with show option.

Example:

$ docker-compose exec admin decapod-admin migration show 0006_create_cluster_data.py
Name: 0006_create_cluster_data.py
Result: ok
Executed at: Mon Feb 6 11:12:04 2017
SHA1 of script: 73eb7adeb1b4d82dd8f9bdb5aadddccbcef4a8b3

-- Stdout:
Migrate 0 clusters.

-- Stderr:

	Reset password of user root. Please check
Password Reset for
details.

Example:

$ docker-compose exec -T admin decapod user get-all
[
 {
 "data": {
 "email": "noreply@example.com",
 "full_name": "Root User",
 "login": "root",
 "role_id": "4ca555d3-24fd-4554-9b4b-ca44bac45062"
 },
 "id": "e6f28a01-ee7f-4ac8-b1ee-a1a21c3eb182",
 "initiator_id": null,
 "model": "user",
 "time_deleted": 0,
 "time_updated": 1488279856,
 "version": 1
 }
]
$ docker-compose exec -T admin decapod-admin password-reset -p MYNEWPASSWORD e6f28a01-ee7f-4ac8-b1ee-a1a21c3eb182

Configure Docker Compose

To configure Docker Compose, modify the docker-compose.override.yml file
or set the environment variables. Use the official
Docker documentation [https://docs.docker.com/compose/extends/] and the
information below.

Decapod Docker Compose configuration supports a number of environment
variables. For a list of variables, see the .env [https://docs.docker.com/compose/env-file/]
file at the top level of the repository. The defaults are applicable for a
development environment built on a local machine and have to be modified to
run in production:

	Environment variable
	Default value
	Description

	DECAPOD_HTTP_PORT
	9999
	Port to bind the HTTP endpoint of Decapod.

	DECAPOD_HTTPS_PORT
	10000
	Port to bind the HTTPS endpoint of Decapod.

	DECAPOD_REGISTRY_URL
	
	By default, Decapod tries to access local images. To take images from a
private registry, point it here.

	DECAPOD_NAMESPACE
	
	In private registries, Decapod images are not always created without a
prefix, sometimes the organization name, like mirantis, is present.
The variable sets this prefix.

	DECAPOD_VERSION
	latest
	Version of Decapod to use. This is the image tag and is set in the
registry. latest means unreleased (developer version).

	DECAPOD_SSH_PRIVATE_KEY
	$(pwd)/containerization/files/devconfigs/ansible_ssh_keyfile.pem
	Full path to the SSH private key that Ansible uses to access Ceph nodes.

Default configuration example:

networks: {}
services:
 api:
 image: decapod/api:latest
 links:
 - database
 restart: on-failure:5
 controller:
 image: decapod/controller:latest
 links:
 - database
 restart: on-failure:5
 volumes:
 - /vagrant/containerization/files/devconfigs/ansible_ssh_keyfile.pem:/root/.ssh/id_rsa:ro
 cron:
 image: decapod/cron:latest
 links:
 - database
 restart: on-failure:3
 database:
 image: decapod/db:latest
 restart: always
 volumes_from:
 - service:database_data:rw
 database_data:
 image: decapod/db-data:latest
 volumes:
 - /data/db:rw
 frontend:
 image: decapod/frontend:latest
 links:
 - api
 - cron
 ports:
 - 10000:443
 - 9999:80
 restart: always
version: '2.0'
volumes: {}

For example, to set docker-prod-virtual.docker.mirantis.net as a registry
and mirantis/ceph as a namespace and run version 0.2, execute
docker compose with the following environment variables:

$ DECAPOD_REGISTRY_URL=docker-prod-virtual.docker.mirantis.net/ DECAPOD_NAMESPACE=mirantis/ceph/ DECAPOD_VERSION=0.2 docker-compose config
networks: {}
services:
 api:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/api:0.2
 links:
 - database
 restart: on-failure:5
 controller:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/controller:0.2
 links:
 - database
 restart: on-failure:5
 volumes:
 - /vagrant/containerization/files/devconfigs/ansible_ssh_keyfile.pem:/root/.ssh/id_rsa:ro
 cron:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/cron:0.2
 links:
 - database
 restart: on-failure:3
 database:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db:0.2
 restart: always
 volumes_from:
 - service:database_data:rw
 database_data:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db-data:0.2
 volumes:
 - /data/db:rw
 frontend:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/frontend:0.2
 links:
 - api
 - cron
 ports:
 - 10000:443
 - 9999:80
 restart: always
version: '2.0'
volumes: {}

Important

The trailing slash in DECAPOD_REGISTRY_URL and DECAPOD_NAMESPACE is
required due to the limitations of the Docker Compose configuration file.

Note

Docker Compose supports reading the environment variables from the .env
file, which should be placed in the same directory as the
docker-compose.yml file. For more information, see the
Docker documentation [https://docs.docker.com/compose/environment-variables/#/the-env-file].

Example:

Configuration:

	The default Mirantis registry for Decapod and the latest version of Decapod

	The private SSH key for Ansible is placed in
/keys/ansible_ssh_keyfile.pem

	The Decapod HTTP port is 80 and the HTTP port is 443

The .env file should look as follows:

DECAPOD_NAMESPACE=mirantis/ceph/
DECAPOD_REGISTRY_URL=docker-prod-virtual.docker.mirantis.net/
DECAPOD_VERSION=latest
DOCKER_HTTP_PORT=80
DOCKER_HTTPS_PORT=443
DOCKER_SSH_PRIVATE_KEY=/keys/ansible_ssh_keyfile.pem

Alternatively, use real environment variables:

$ export DECAPOD_NAMESPACE=mirantis/ceph/
$ export DECAPOD_REGISTRY_URL=docker-prod-virtual.docker.mirantis.net/
$ export DECAPOD_VERSION=latest
$ export DOCKER_HTTP_PORT=80
$ export DOCKER_HTTPS_PORT=443
$ export DOCKER_SSH_PRIVATE_KEY=/keys/ansible_ssh_keyfile.pem
$ docker-compose config
networks: {}
services:
 api:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/api:latest
 links:
 - database
 restart: on-failure:5
 controller:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/controller:latest
 links:
 - database
 restart: on-failure:5
 volumes:
 - /keys/ansible_ssh_keyfile.pem:/root/.ssh/id_rsa:ro
 cron:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/cron:latest
 links:
 - database
 restart: on-failure:3
 database:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db:latest
 restart: always
 volumes_from:
 - service:database_data:rw
 database_data:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db-data:latest
 volumes:
 - /data/db:rw
 frontend:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/frontend:latest
 links:
 - api
 - cron
 ports:
 - 443:443
 - 80:80
 restart: always
version: '2.0'
volumes: {}

See also

	Decapod configuration files

Decapod configuration files

Decapod supports a number of configuration files you may want to propagate
into the container:

ansible_ssh_keyfile.pem

SSH private key used by Ansible to connect to Ceph nodes. Decapod
uses Ansible to configure remote machines. Ansible uses SSH to
connect to remote machines. Therefore, it is required to propagate
SSH private key to Decapod. If you do not have a prepared SSH
private key, generate a new one as described in Create SSH keys [https://confluence.atlassian.com/bitbucketserver/creating-ssh-keys-776639788.html].

After you generate a new one, copy it to the top level of the source
code repository. The file name must be ansible_ssh_keyfile.pem and
the format of the file must be PEM.

Warning

Keep the key private.

SSL certificates

	ssl.key

	Private key for SSL/TLS certificate. Used by web UI.

	ssl.crt

	Signed certificate for SSL/TLS. Used by web UI.

	ssl-dhparam.pem

	Diffie-Hellman ephemeral parameters for SSL/TLS. This enables
perfect forward secrecy for secured connection.

If you do not have such certificates, generate new ones as described in
OpenSSL Essentials [https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs]
and Forward Secrecy & Diffie Hellman Ephemeral Parameters [https://raymii.org/s/tutorials/Strong_SSL_Security_On_nginx.html#Forward_Secrecy_&_Diffie_Hellman_Ephemeral_Parameters].
All SSL keys should be in the PEM format. Place the SSL files to the top
level of your source code repository.

Warning

Keep the key private. Do not use self-signed certificates for a production
installation.

config.yaml

Configuration file for Decapod. Please check
config.yaml file for details.

mongodb.pem

SSL/TLS pair of certificate and key, concatenated in one file.
Required to use secured connection by MongoDB. For information on
how to generate this file, refer to the official documentation [https://docs.mongodb.com/manual/tutorial/configure-ssl/#pem-file].
To allow SSL/TLS on client side, verify that config file
has the ?ssl=true parameter in URI. For example,
mongodb://database:27017/db will not use a secured connection, but
mongodb://database:27017/db?ssl=true will.

Note

To use database authentication, follow the official guide or the
community checklist:

	https://docs.mongodb.com/manual/core/security-users/

	https://gist.github.com/leommoore/f977860d22dfb2860fc2

	https://hub.docker.com/_/mongo/

After you have a MongoDB running with the required
authentication, verify that the user/password pair
is set in the config file. The URI should look like
mongodb://user:password@database:27017/db?ssl=true.

By default, containers will have no information about users and their
passwords.

Propagation to containers

Here is the list of mentioned files and their placement in containers.
For simplicity, this table uses docker-compose service names.

	Configuration file
	api
	controller
	admin
	frontend
	database

	ansible_ssh_keyfile.pem
	
	/root/.ssh/id_rsa
	/root/.ssh/id_rsa
	
	

	ssl.key
	
	
	
	/ssl/ssl.key
	

	ssl.crt
	
	
	
	/ssl/ssl.crt
	

	ssl-dhparam.pem
	
	
	
	/ssl/dhparam.pem
	

	config.yaml
	/etc/decapod/config.yaml
	/etc/decapod/config.yaml
	/etc/decapod/config.yaml
	
	

	mongodb.pem
	
	
	
	
	/certs/mongodb.pem

	mongodb-ca.crt
	
	
	
	
	/certs/mongodb-ca.crt

To specify custom files, use the docker-compose.override.yml
file. For details, see Docker Compose documentation [https://docs.docker.com/compose/extends/#/multiple-compose-files]. An
example of such file is placed in the top level of the repository:

version: "2"

services:
 database:
 volumes:
 # SSL certificate for MongoDB
 - ./containerization/files/devconfigs/mongodb-ca.crt:/certs/mongodb-ca.crt:ro
 # SSL keys for MongoDB
 - ./containerization/files/devconfigs/mongodb.pem:/certs/mongodb.pem:ro

 api:
 volumes:
 - ./containerization/files/devconfigs/config.yaml:/etc/decapod/config.yaml:ro

 controller:
 volumes:
 - ./containerization/files/devconfigs/config.yaml:/etc/decapod/config.yaml:ro
 - /keys/ansible_ssh_keyfile.pem:/root/.ssh/id_rsa:ro

 cron:
 volumes:
 - ./containerization/files/devconfigs/config.yaml:/etc/decapod/config.yaml:ro

In this case, Docker Compose will use the following merged configuration:

networks: {}
services:
 api:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/api:latest
 links:
 - database
 restart: on-failure:5
 volumes:
 - /vagrant/containerization/files/devconfigs/config.yaml:/etc/decapod/config.yaml:ro
 controller:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/controller:latest
 links:
 - database
 restart: on-failure:5
 volumes:
 - /vagrant/containerization/files/devconfigs/config.yaml:/etc/decapod/config.yaml:ro
 - /keys/ansible_ssh_keyfile.pem:/root/.ssh/id_rsa:ro
 cron:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/cron:latest
 links:
 - database
 restart: on-failure:3
 volumes:
 - /vagrant/containerization/files/devconfigs/config.yaml:/etc/decapod/config.yaml:ro
 database:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db:latest
 restart: always
 volumes:
 - /vagrant/containerization/files/devconfigs/mongodb-ca.crt:/certs/mongodb-ca.crt:ro
 - /vagrant/containerization/files/devconfigs/mongodb.pem:/certs/mongodb.pem:ro
 volumes_from:
 - service:database_data:rw
 database_data:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/db-data:latest
 volumes:
 - /data/db:rw
 frontend:
 image: docker-prod-virtual.docker.mirantis.net/mirantis/ceph/decapod/frontend:latest
 links:
 - api
 - cron
 ports:
 - 443:443
 - 80:80
 restart: always
version: '2.0'
volumes: {}

Note

If you have modified the configuration, provide it for API, controller, and
cron services. There is no possibility to define it for all services in
Docker Compose configuration version 2.

See also

	PEM [https://tools.ietf.org/html/rfc1421]

	YAML [http://www.yaml.org/spec/1.2/spec.html]

config.yaml file

Decapod configuration is done with file in YAML [http://www.yaml.org/] format. This guide briefly goes through all
configuration sections and describes each setting in details. Also, at
the bottom of the page, you can find a list of specific usecases like
integrations with different authentication backends.

Here is an example of default configuration for containers:

common:
 password:
 length: 10
 time_cost: 10
 memory_cost: 2048
 parallelism: 3
 hash_len: 32
 salt_len: 16
 password_reset_ttl_in_seconds: 86400 # 1 day
 email:
 enabled: false
 from: "noreply@mirantis.com"
 host: "localhost"
 port: 25
 login: ""
 password: ""

Options here are Flask options so please check
http://flask.pocoo.org/docs/0.11/config/#builtin-configuration-values
api:
 debug: false
 testing: false
 logger_name: "decapod.decapod_api.wsgi"
 logger_handler_policy: "never"
 json_sort_keys: faluse
 jsonify_prettyprint_regular: false
 json_as_ascii: false
 pagination_per_page: 25
 server_discovery_token: "26758c32-3421-4f3d-9603-e4b5337e7ecc"
 reset_password_url: "http://127.0.0.1/password_reset/{reset_token}/"
 token:
 ttl_in_seconds: 1800
 logging:
 propagate: true
 level: "DEBUG"
 handlers:
 - "stderr_debug"
 auth:
 type: native
 parameters: {}
 # type: keystone
 # parameters:
 # auth_url: http://keystone:5000/v3
 # username: admin
 # password: nomoresecret
 # project_domain_name: default
 # project_name: admin
 # user_domain_name: default

controller:
 pidfile: "/tmp/decapod-controller.pid"
 daemon: false
 ansible_config: "/etc/ansible/ansible.cfg"
 # 0 worker_threads means that we will have 2 * CPU count threads
 worker_threads: 0
 graceful_stop: 10
 logging:
 propagate: true
 level: "DEBUG"
 handlers:
 - "stderr_debug"

cron:
 clean_finished_tasks_after_seconds: 2592000 # 60 * 60 * 24 * 30; 30 days

db:
 uri: "mongodb://database:27017/decapod?ssl=true"
 connect: false
 connect_timeout: 5000 # ms, 5 seconds
 socket_timeout: 5000 # ms, 5 seconds
 pool_size: 50
 gridfs_chunk_size_in_bytes: 261120 # 255 kilobytes

plugins:
 alerts:
 enabled: []
 email:
 enabled: false
 send_to:
 - "bigboss@example.com"
 from: "errors@example.com"
 playbooks:
 disabled:
 - hello_world

Default Python logging is used.
https://docs.python.org/2/library/logging.config.html#dictionary-schema-details
logging:
 version: 1
 incremental: false
 disable_existing_loggers: true
 root:
 handlers: []
 filters: {}
 formatters:
 stderr_default:
 format: "%(asctime)s [%(levelname)-8s]: %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 stderr_debug:
 format: "%(asctime)s [%(levelname)-8s] (%(filename)15s:%(lineno)-4d): %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 syslog:
 format: "%(name)s %(asctime)s [%(levelname)-8s]: %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 handlers:
 stderr_debug:
 class: "logging.StreamHandler"
 formatter: "stderr_debug"
 level: "DEBUG"
 stderr_default:
 class: "logging.StreamHandler"
 formatter: "stderr_default"
 level: "DEBUG"
 syslog:
 class: "logging.handlers.SysLogHandler"
 formatter: "syslog"
 level: "DEBUG"

Decapod tries to search configuration file in different places in
following order:

	$(pwd/decapod.yaml

	$XDG_CONFIG_HOME/decapod/config.yaml

	$HOME/.decapod.yaml

	/etc/decapod/config.yaml

	Default configuration file from decapod_common package.

If some configuration file was found and parsed before, other
alternatives won’t be used. In other words, if you have default
configuration file in /etc/decapod/config.yaml, then placing
configuration in $XDG_CONFIG_HOME/decapod/config.yaml
will override it completely (check specs on XDG directories [https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html]).

Default configuration in containerized Decapod stack is placed in
/etc/decapod/config.yaml.

Configuration has several sections. Next section will cite mentioned
configuration above and describe purpose and possible variations of
these settings with some recommendations.

Settings

common

Common section defines some generic settings for Decapod which are not
related to specifics, like API or controller settings.

common:
 password:
 length: 10
 time_cost: 10
 memory_cost: 2048
 parallelism: 3
 hash_len: 32
 salt_len: 16
 password_reset_ttl_in_seconds: 86400 # 1 day
 email:
 enabled: false
 from: "noreply@mirantis.com"
 host: "localhost"
 port: 25
 login: ""
 password: ""

	password

	This section describes settings for Decapod key derivation
function. Decapod do not store user passwords in plaintext,
instead it uses key derivation functions to calculate
cryptographic secure hash from the password. To do so, it uses
Argon2 [https://password-hashing.net/argon2-specs.pdf]
key derivation function which is somehow similar to scrypt [http://www.tarsnap.com/scrypt.html] but has a property to defense
against concurrent attacks with GPUs.

Default settings are perfectly fine for most of deployments
but is you want to tune them, please check recommendations [http://argon2-cffi.readthedocs.io/en/stable/parameters.html] on
application of Argon2 to password hashing functionality.

	password_reset_ttl_in_seconds

	When user resets her password, she gets a secret token. Consuming this
token will do actual password reset. This setting sets TTL of such token. Token lives only such amount of seconds
and expires after.

	email

	This configuration setting defines how to send emails from Decapod.
host, port, login and password are self-descriptive settings,
from means email to set in From field. enabled is
a boolean setting which enables or disabled email sending. If it is
disabled, all other fields in this section are ignored.

api

This settings group describes configuration specific to API service
only.

api:
 debug: false
 testing: false
 logger_name: "decapod.decapod_api.wsgi"
 logger_handler_policy: "never"
 json_sort_keys: faluse
 jsonify_prettyprint_regular: false
 json_as_ascii: false
 pagination_per_page: 25
 server_discovery_token: "26758c32-3421-4f3d-9603-e4b5337e7ecc"
 reset_password_url: "http://127.0.0.1/password_reset/{reset_token}/"
 token:
 ttl_in_seconds: 1800
 logging:
 propagate: true
 level: "DEBUG"
 handlers:
 - "stderr_debug"
 auth:
 type: native
 parameters: {}
 # type: keystone
 # parameters:
 # auth_url: http://keystone:5000/v3
 # username: admin
 # password: nomoresecret
 # project_domain_name: default
 # project_name: admin
 # user_domain_name: default

Most of the settings propagates to Flask [http://flask.pocoo.org/] directly. To get descripton
of Flask settings, please check official documentation [http://flask.pocoo.org/docs/0.12/config/#builtin-configuration-values].
Please find the table with mapping below.

	Decapod setting
	Flask setting

	debug
	DEBUG

	testing
	TESTING

	logger_name
	LOGGER_NAME

	logger_handler_policy
	LOGGER_HANDLER_POLICY

	json_sort_keys
	JSON_SORT_KEYS

	json_as_ascii
	JSON_AS_ASCII

	jsonify_prettyprint_regular
	JSONIFY_PRETTYPRINT_REGULAR

If you not quite sure which setting to set, use default ones, they are
reasonable for most of deployments.

The following settings are not Flask ones, but Decapod specific.

	pagination_per_page

	This setting sets a default count of items per page in paginated
listings. If amount of items is less than pagination_per_page, then
less elements would be returned.

	server_discovery_token

	Servers, found during process of server discovery, has to have
some authentication token to use to access POST /v1/server API
endpoint. This is a special token only for such purposes: it does not
refer to any certain user and it is possible to access only mentioned
API endpoint with it.

This is safe because even after accessing of this endpoint, Ansible
has to access remote host to gather facts and verify access.

	reset_password_url

	This is a template of URL which would be used for generating email on
password reset. Email, which should be send to the user, will contain
this URL. {reset_token} will be replaced by Decapod to correct
password reset token.

	token

	This setting set has a configuration for authentication tokens. At
the time of writing, only one setting is present: ttl_in_seconds
which defines token TTL in seconds. Please be
noticed, that all tokens, which are already generated, won’t respected
updated setting, only new tokens will be generated.

This section makes sense only if native authentication backend is
used. For example, Keystone integration won’t respect this setting
because Keystone manages its tokens.

In future releases this section can be moved to auth.

	logging

	This section defines specific settings for logging in API. This
applies settings from logging to
API only.

	auth

	This section configures authentication backend used by Decapod.
Absent section implies native backend with default configuration.
Configuration is set like this:

auth:
 type: sometype
 parameters:
 - setting1: value1
 - setting2: value2

type defines the type of backend to be used and parameters is an
object to configure it. Please check Authentication backends for
details on available backends.

controller

Controller defines specific settings for controller serivce. This
service manages task queue and runs Ansible for tasks.

controller:
 pidfile: "/tmp/decapod-controller.pid"
 daemon: false
 ansible_config: "/etc/ansible/ansible.cfg"
 # 0 worker_threads means that we will have 2 * CPU count threads
 worker_threads: 0
 graceful_stop: 10
 logging:
 propagate: true
 level: "DEBUG"
 handlers:
 - "stderr_debug"

	daemon

	This section defines, shall we run controller as UNIX daemon. If you
are using systemd or Docker containers, please set this to false.

	pidfile

	If controller is run as daemon, this setting defines PIDFile for
daemon to use.

	ansible_config

	Path to default Ansible config to use. Usually, you do not want to
change this setting.

	worker_threads

	Controller uses worker pool to manage Ansible executions concurrently.
You can set an amount of workers per controller in this setting. 0
has a special meaning: define this number automatically. By default it
is 2 * cpu_count.

	graceful_stop

	Since controller executes a lot of processes, it cannot be stopped at
the same moment: processes should be correctly finished. This settings
defines the timeout of graceful stopping of those external processes.
Initially, controller sends SIGTERM to them and if they won’t stop
after graceful_stop of seconds, it kills them with SIGKILL.

	logging

	This section defines specific settings for logging in controller. This
applies settings from logging to
controller only.

Please be noticed that some scripts, unreleated to controller directly
also uses these settings.

cron

This section defines several cron-like settings. They may or may not be
used by cron, depepnding on current implementation.

cron:
 clean_finished_tasks_after_seconds: 2592000 # 60 * 60 * 24 * 30; 30 days

	clean_finished_tasks_after_seconds

	This setting defines TTL for finished tasks.
They are going to be purged from database after this amount of
seconds. This is related only to finished tasks, that were completed
or failed. It does not related to not started ones.

db

These settings are related to MongoDB: how to connect to database and
some specifics of db client configuration.

db:
 uri: "mongodb://database:27017/decapod?ssl=true"
 connect: false
 connect_timeout: 5000 # ms, 5 seconds
 socket_timeout: 5000 # ms, 5 seconds
 pool_size: 50
 gridfs_chunk_size_in_bytes: 261120 # 255 kilobytes

	uri

	This setting describes URI to connect to MongoDB.
Please check official docs on connection URIs [https://docs.mongodb.com/manual/reference/connection-string/].

	connect

	This settings defines will Decapod connect to MongoDB immediately
after initialization of a client or on the first request. It is
suggested to keep this setting as false.

	socket_timeout

	Controls how long (in milliseconds) the driver will wait during server
monitoring when connecting a new socket to a server before concluding
the server is unavailable.

	socket_timeout

	Controls how long (in milliseconds) the driver will wait for a
response after sending an ordinary (non-monitoring) database operation
before concluding that a network error has occurred.

	pool_size

	The maximum allowable number of concurrent connections to each
connected server. Requests to a server will block if there are
pool_size outstanding connections to the requested server.

	gridfs_chunk_size_in_bytes

	This setting defines a size of file chunk (a part of
the file, stored in separate document) for GridFS [https://docs.mongodb.com/manual/core/gridfs/]. 255 kilobytes is a
reasonable default.

plugins

This section describes what to do with plugins: disable, enable some etc.

plugins:
 alerts:
 enabled: []
 email:
 enabled: false
 send_to:
 - "bigboss@example.com"
 from: "errors@example.com"
 playbooks:
 disabled:
 - hello_world

As you can see, this section is a mapping of settings itself. All
plugins are split in 2 categories: alerts and playbooks.

Alerts plugins are responsible for problem alerting (e.g 500 errors).
This section has a list of enabled alerts plugins. Every key except of
enabled is how to setup each alert plugin.

Playbooks section has only 1 setting: disabled. This is a list of
plugins which are disabled even if they are installed.

logging

This section defines configuration of Decapod logging.

logging:
 version: 1
 incremental: false
 disable_existing_loggers: true
 root:
 handlers: []
 filters: {}
 formatters:
 stderr_default:
 format: "%(asctime)s [%(levelname)-8s]: %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 stderr_debug:
 format: "%(asctime)s [%(levelname)-8s] (%(filename)15s:%(lineno)-4d): %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 syslog:
 format: "%(name)s %(asctime)s [%(levelname)-8s]: %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 handlers:
 stderr_debug:
 class: "logging.StreamHandler"
 formatter: "stderr_debug"
 level: "DEBUG"
 stderr_default:
 class: "logging.StreamHandler"
 formatter: "stderr_default"
 level: "DEBUG"
 syslog:
 class: "logging.handlers.SysLogHandler"
 formatter: "syslog"
 level: "DEBUG"

The meaning of this section and options is described
in official Python documentation on logging:
https://docs.python.org/3.5/library/logging.config.html#configuration-dictionary-schema

Authentication backends

Decapod can use several authentication backends. This section enumerates
supported variants.

	Native authentication backend

	Keystone authentication backend
	Setup config.yaml

	Initial keystone migration

Native authentication backend

Native configuration backend uses Decapod MongoDBs to store
authentication tokens. Everytime when user logins into Decapod, it
creates new authentication token and stores it in collection. Everytime
user logouts, corresponding token is removed. Every token has TTL and wipes out when time is came (this is done by using
MongoDB TTL indexes).

To setup native authentication backend, just use following snippet
for your config.yaml file. Place this
snippet in api section of the config.

auth:
 type: native
 parameters: {}

This type of backend does not require any configuration. If you omit
section api ‣ auth completely, this will imply.

Keystone authentication backend

Keystone authentication backend uses Keystone [https://docs.openstack.org/developer/keystone/] for
authentication. This is more complex setup than default
Native authentication backend and involves
several steps.

Keystone integration is one-way sync. Since Decapod uses its own role
system, only user authentication is used. User delete in Decapod won’t
affect Keystone and Decapod won’t write to Keystone. Keystone is just a
read only source of authentication truth.

If Keystone integration is enabled, Decapod will sync user list by Cron
every 10 minutes. If user is deleted or disabled in Keystone, it will
be deleted in Decapod also. If user is created, it will be created in
Decapod. If it is enabled again, user will be restored.

Setup config.yaml

To setup Keystone integration, please update your
config.yaml file file, section api.
Insert following snippet:

auth:
 type: keystone
 parameters:
 auth_url: {os_auth_url}
 username: {os_username}
 password: {os_password}
 project_domain_name: {os_project_domain_name}
 project_name: {os_project_name}
 user_domain_name: {os_domain_name}

Please check OpenStack official documentation [https://docs.openstack.org/developer/python-openstackclient/man/openstack.html#options] on a meaning of these parameters. For whole
list of options, please check documentation of v3.Password [https://docs.openstack.org/developer/python-keystoneclient/api/keystoneclient.auth.identity.v3.html#keystoneclient.auth.identity.v3.password.Password].

Important

Username and password should correspond to the user which can request
token for other users and list them.

Initial keystone migration

After you enable Keystone, you immediately get a “chicken or the egg”
problem: to access Decapod and set user permissions, you need a user
with enough permissions, but this user can be absent from Decapod
itself.

The solution is initial sync. After you’ve setup your
config.yaml, you need to perform initial sync. This could be
done with admin service.

$ docker-compose -p myprojectname exec admin decapod-admin keystone initial -h
Usage: decapod-admin keystone initial [OPTIONS] ROLE [USER]...

 Initial Keystone sync.

 On initial sync it is possible to setup role for a user (users). If no
 usernames are given, then all users from Keystone would be synced and role
 will be applied to them.

Options:
 -h, --help Show this message and exit.

With this utility you need to set the role name (default is wheel
which has a biggest number of permissions) and user logins which will
have this role. After that sync, you can access Decapod and set roles
for required users.

Note

Newely synchronized users from Keystone won’t have any role.

Synchronization is done by cron in admin service but you can execute
it manually after initial sync.

$ docker-compose -p myprojectname exec admin decapod-admin keystone sync

Data models

Decapod is used to deploy and manage Ceph clusters. All the management
functionality is distributed using plugins, called playbooks. Each playbook
requires configuration. This section describes the Decapod data models and
entities, workflows, and terms used in other sections.

The section contains the following topics:

	User model

	Role model

	Server model

	Cluster model

	Decapod playbooks

User model

A user is an entity that contains common information about the Decapod user.
It has a login, email, password, full name, and a role. The user model is used
for authentication and authorization purposes.

When creating a user model in the system, Decapod sends the new password to
the user email. It is possible to reset the password and set a new one.

A user created without a role can do a bare minimum with the system because
even listing the entities requires permissions. Authorization is performed by
assigning a role to the user. A user may have only one role in Decapod.

See also

	Role model

Role model

A role has two properties: name and permissions. Consider the role as a named
set of permissions. Decapod has two types of permissions:

	API permissions allow using different API endpoints and, therefore, a set of
actions available for usage. For example, to view the list of users, you
need to have the view_user permission. To modify the information about a
user, you also require the edit_user permission.

Note

Some API endpoints require several permissions. For example, user editing
requires both view_user and edit_user permissions.

	Playbook permissions define a list of playbooks that a user can execute. For
example, a user with any role can execute service playbooks to safely update
a host package or add new OSDs. But a user requires special permissions to
execute destructive playbooks, such as purging a cluster or removing OSD
hosts.

Server model

The server model defines a server used for Ceph purposes. Servers are detected
during the server discovery process. Each server has a name (FQDN by default),
IP, FQDN, state, cluster ID, and facts. A user is only allowed to modify the
server name, other attributes are updated automatically on the server
discovery.
The facts property is a set of facts collected by Ansible and returned as is.
By default, Ansible collects only its own facts, ignoring Ohai and Facter.

Note

We do not recommend that you manually create a new server using the API.
Servers must be discovered by the discovery protocol.

Server discovery is an automatic process of discovering new servers in Decapod.
During this process, Decapod works passively.

Important

A node operating system deployment is not in the scope of Decapod. The
server discovery is performed using cloud-init, so the only requirement
for the node OS is to support cloud-init.

The cloud-init package is required to create a user for Ansible, set the
deployment SSH public key for the user’s authorized keys, and update the
/etc/rc.local script. Then, the /etc/rc.local script registers the
host in Decapod.

See also

	Ohai [https://docs.chef.io/ohai.html]

	Facter [https://docs.puppet.com/facter]

	The cloud-init documentation [http://cloudinit.readthedocs.io/en/latest/index.html]

Cluster model

A cluster defines a separate Ceph cluster. It has a default name that you can
edit only explicitly. You can delete only the cluster that has no servers in
it.

An explicit cluster model is required because it defines a name of FSID
for Ceph. By default, the name of the model is used as a name of the Ceph
cluster and its ID as FSID.

The cluster model configuration is a simple mapping of roles to the list of
servers. You cannot manage this configuration explicitly. Instead, you can use
playbooks. For example, when executing the playbook for adding a new OSD host,
this host will be added to the list of servers for role osds. If you
remove Rados Gateways from the clusters using an appropriate playbook, these
servers will be deleted from the list.

Several models are required to deploy a cluster. Basically, cluster deployment
contains the following steps:

	Creating an empty cluster model. This model is a holder for the cluster
configuration. Also, it defines the Ceph FSID and name.

	Creating a playbook configuration model for the deploy_cluster playbook.
This will allow you to deploy the cluster.

Note

Cluster deployment is an idempotent operation and you may execute it
several times.

	Executing that playbook configuration by creating a new execution. If
required, examine the execution steps or logs.

See also

	Playbook configuration

	Playbook execution

Decapod playbooks

Decapod uses plugins to deliver the Ceph management functionality. A plugin is
a Python package that contains Ansible playbooks, a configuration file, and
the Python code itself.

This section describes the Decapod playbooks and contains the following topics:

	Playbook configuration

	Playbook execution

Playbook configuration

In most cases, Ansible playbooks are generic and have the capability to inject
values: not only the hosts where a playbook has to be executed but also some
arbitrary parameters, for example, Ceph FSID. These parameters are injected
into the Ansible playbooks using the --extra-vars option or by setting
them in inventory. A playbook configuration defines the name of the playbook
and its parameters.
For simplicity, parameters are split into two sections:

	The global_vars section contains the global variables for a playbook.
Each parameter in the global_vars section is defined for all hosts.
However, the inventory section redefines any parameters.

	The inventory section is used as the Ansible inventory. Mostly, this
will be a real inventory. You can change the section to exclude sensitive
information, for example. But in most cases, the inventory parameters
are used as is.

Note

Parameters from the global_vars section will be passed as the
--extra-vars parameters. For details, see the
Ansible official documentation [http://docs.ansible.com/ansible/playbooks_variables.html#passing-variables-on-the-command-line].

Basically, configuring a playbook includes:

	Placing the contents of global_vars into ./inventoryfile.

	Executing the following command:

$ ansible-playbook -i ./inventoryfile --extra-vars "inventory_section|to_json" playbook.yaml

Decapod generates the best possible configuration for a given set of
Server model models. After that, modify it as required.

Note

Decapod uses the server IP as a host. This IP is the IP of the machine
visible to Decapod and does not belong to any network other than the
one used by Decapod to SSH on the machine.

Creating a playbook configuration supports optional hints. Hints are the
answers to simple questions understandable by plugins. With hints, you can
generate more precise configuration. For example, if you set the dmcrypt
hint for a cluster deployment, Decapod will generate the configuration with
dmcrypted OSDs.

To see the available hints, use the GET /v1/playbook API endpoint or see
Playbook plugins.

See also

	Playbook execution

Playbook execution

The execution model defines the execution of a playbook configuration. You can
run each playbook configuration several times, and this model defines a single
execution. As a result, you receive the execution status (completed, failed,
and others) and the execution log. The execution log can be shown as:

	Execution steps, which are the parsed steps of the execution.

	Raw log, which is a pure Ansible log of the whole execution as is, taken
from stdout and stderr.

Each execution step has timestamps (started, finished), ID of the server that
issued the event, role and task name of the event, status of the task, and
detailed information on the error, if any.

See also

	Playbook configuration

Manage users and roles

This section descibes how to manage users and roles in Decapod through the web
UI and contains the following topics:

	Manage users

	Manage roles

Manage users

To add a new user:

	Log in to the Decapod web UI.

	Navigate to USERS MANAGEMENT.

	Click the USERS tab.

	Click CREATE NEW USER and type the required data.

	Click SAVE.
A new user has been created.

Note

The password is sent to the user email. This password can be changed.

After saving the changes, you will see that the CHANGELOG is
updated. This CHANGELOG tracks all the results and it is possible
to view the details about a user modifications. This is related not only to
the user management. Decapod stores all changes and you can always obtain the
entire log.

Clicking DELETE USER does not delete the user but archives it
instead. You can still access the user through the Decapod CLI if you know the
user ID.

Manage roles

The following table describes how to create, edit, and delete roles through the
Decapod web UI.

	Task
	Steps

	Create a new role
	
	In the Decapod web UI. Navigate to USERS MANAGEMENT.

	Click the ROLES tab.

	Click CREATE NEW ROLE.

	Type the role name and select the required permissions.

	Click SAVE CHANGES.

	Edit a role
	
	In the Decapod web UI, navigate to USERS MANAGEMENT.

	Click the ROLES tab.

	Click the pen icon near the required role name and edit the role as
required.

	Delete a role
	
	In the Decapod web UI, navigate to USERS MANAGEMENT.

	Click the ROLES tab.

	Click the trash can icon near the required role name.

Note

This will not completely delete the role but will archive it instead.
You can access the role through the Decapod CLI if you know the role
ID.

	Assign a role to a user
	
	In the Decapod web UI, navigate to USERS MANAGEMENT.

	Click the USERS tab.

	Expand the required user.

	Select the required role in the ROLE section.

	Click SAVE.

See also

	Role model

Deploy a cluster

This section describes the cluster deployment workflow using the Decapod web
UI.

The section contains the following topics:

	Create a cluster

	View servers

	Create a playbook configuration

	Execute a playbook configuration

Create a cluster

To create a cluster:

	Log in to the Decapod web UI.

	Navigate to CLUSTER.

	Click CREATE NEW CLUSTER.

	Type the cluster name and click SAVE.

A new cluster is empty and contains no servers. Discover servers as described
in Discover a server.

View servers

Verify that you have discovered the required servers as described in
Discover a server.

To view the discovered servers:

	Log in to the Decapod web UI.

	Navigate to SERVERS. The SERVERS page lists the
servers accessible by Decapod.

	Expand the required server to view its details.

Create a playbook configuration

To create a playbook configuration:

	Log in to the Decapod web UI.

	Navigate to PLAYBOOK CONFIGURATION.

	Click CREATE NEW CONFIGURATION.

	Type the configuration name and select a cluster, then click
NEXT.

	Select the required playbook and click NEXT.

The table lists the plugins available for execution. Some playbooks require
an explicit list of servers. For example, to purge a cluster, Decapod will
use the servers in this cluster and you do not need to specify them
manually.

	In the SELECT SERVERS window, select all servers and click
SAVE CHANGES.
Once the new playbook configuration is created, you will see the
PLAYBOOK CONFIGURATION window.

	Edit the playbook configuration, if required, and click
SAVE CHANGES.

Execute a playbook configuration

To execute a playbook configuration:

	In the Decapod web UI, navigate to CONFIGURATIONS.

	Click EXECUTE to execute the required configuration.
Once the execution starts, its state changes to STARTED on the
EXECUTIONS page.

	To view the execution process, click LOGS.

	Once the execution is finished, its status will change to
COMPLETED. To download the entire execution log, click
DOWNLOAD.

Ceph monitoring

Decapod may support integration with various monitoring
systems. It ships with simplistic in-house monitoring tool
ceph-monitoring [https://github.com/Mirantis/ceph-monitoring/].
Also, it is possible to integrate with other tools like
Prometheus [https://prometheus.io/] via Telegraf [https://www.influxdata.com/time-series-platform/telegraf/]. In future
there will be more choices presented, please check the list of
supported plugins.

ceph-monitoring is a tool which collects statistics on
cluster state and monitors performance from time to time, you may
consider it as executed by Cron.

admin service serves collected data. To access it,
check DECAPOD_MONITORING_PORT environment variable (default is
10001). So, if you access Decapod like http://10.0.0.10:9999,
docs will be served on http://10.0.0.10:10001.

If you do not have information on cluster which was just deployed,
please wait ~15 minutes and try again. If data is still not accessible,
please check logs of admin service. You can get them with following
command:

$ docker-compose -p myprojectname logs admin

Use the Decapod CLI

This section contains the following topics:

	Install the Decapod CLI

	Access the Decapod CLI

	Cluster deployment workflow

Install the Decapod CLI

To install the Decapod CLI on a local machine, install two packages:

	decapodlib, the RPC client library to access the Decapod API

	decapod-cli, the CLI wrapper for the library

To install the Decapod CLI:

	At the top level of the source code repository, run the following command
to build the packages and place them to the output/eggs directory:

$ make build_eggs

	Install the packages:

$ pip install output/eggs/decapodlib*.whl output/eggs/decapod_cli*.whl

	Run decapod to verify the installation.

See also

	Access the Decapod CLI

Access the Decapod CLI

To access Decapod, you need to know its URL (http://10.10.0.2:9999 or
https://10.10.0.2:10000), your username and password (root/root for a
development installation).

To access Decapod using CLI:

	Set your credentials directly to the Decapod CLI or use the environment
variables:

export DECAPOD_URL=http://10.10.0.2:9999
export DECAPOD_LOGIN=root
export DECAPOD_PASSWORD=root

Save this to a file and source when required.

	Verify that it works:

$ decapod -u http://10.10.0.2:9999 -l root -p root user get-all

If you used environment variables, run:

$ decapod user get-all

Cluster deployment workflow

This section describes the cluster deployment workflow and contains the
following topics:

	Create a cluster

	Discover a server

	Create a playbook configuration

	Update a playbook configuration

	Execute a playbook configuration

Create a cluster

To create a cluster:

	Verify that you can log in to the Decapod using CLI.

	To create a cluster, run:

$ decapod cluster create <CUSTER_NAME>

Example:

$ decapod cluster create ceph
{
 "data": {
 "configuration": {},
 "name": "ceph"
 },
 "id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
 "model": "cluster",
 "time_deleted": 0,
 "time_updated": 1479902503,
 "version": 1
}

As a result, a new cluster with the name ceph and ID
f2621e71-76a3-4e1a-8b11-fa4ffa4a6958 has been created. This ID is
required for creating the playbook configuration.

	Proceed to Discover a server.

Discover a server

To discover a server:

	Generate the user-data configuration for cloud-init. For details, see
Generate user data.

The cloud-init execution generates the content of /etc/rc.local.
The first and next reboots will call the Decapod API for server registering.
Such registration is an idempotent operation. The execution of the Decapod
API (POST /v1/server) creates a task for the controller server on facts
discovery. The controller executes this task and collects facts from the
remote host. A new server model is created or the information on the
existing one is updated.

	With this configuration, deploy an operating system on a Ceph node. For an
example of such deployment, see: Deploy an operating system on a Ceph node,
official cloud-init documentation [http://cloudinit.readthedocs.io/en/latest/topics/datasources.html],
or use kernel parameters [https://github.com/number5/cloud-init/blob/master/doc/sources/kernel-cmdline.txt].

As a result, the server should be listed in Decapod. The server discovery takes
time because of cloud-init. Therefore, the server may appear in five
minutes after deployment. Once the server appears in Decapod, the tool can use
it.

See also

	Server model

Create a playbook configuration

To create a playbook configuration:

	List the existing playbooks:

$ decapod playbook get-all
{
 "items": [
 {
 "description": "Adding new OSD to the cluster.\n\nThis plugin adds OSD to the existing cluster.",
 "id": "add_osd",
 "name": "Add OSD to Ceph cluster",
 "required_server_list": true
 },
 {
 "description": "Ceph cluster deployment playbook.\n\nThis plugin deploys Ceph cluster into a set of servers. After sucessful\ndeployment, cluster model will be updated.",
 "id": "cluster_deploy",
 "name": "Deploy Ceph cluster",
 "required_server_list": true
 },
 {
 "description": "Example plugin for playbook.\n\nThis plugin deploys simple hello world service on remote machine If\nremote machine host is 'hostname', \
 then http://hostname:8085 will\nrespond with '{\"result\": \"ok\"}' JSON.",
 "id": "hello_world",
 "name": "Hello World",
 "required_server_list": false
 },
 {
 "description": "Purge whole Ceph cluster.\n\nThis plugin purges whole Ceph cluster. It removes packages, all data,\nreformat Ceph devices.",
 "id": "purge_cluster",
 "name": "Purge cluster",
 "required_server_list": false
 },
 {
 "description": "Remove OSD host from cluster.",
 "id": "remove_osd",
 "name": "Remove OSD host from Ceph cluster",
 "required_server_list": true
 }
]
}

This will list the available playbooks in details. The name and
description are the human-readable items to display in the Decapod UI.

	Note the ID of the Ceph cluster deployment playbook. It is
cluster_deploy in the example above.

	The cluster deployment playbook requires a list of servers to operate with
(field required_server_list is true). To list the available servers:

$ decapod server get-all

Note

The output of this command can be quite long. Therefore, we recommend
that you use a tool for listing. One of the best tools available to work
with JSON in CLI is jq [https://stedolan.github.io/jq/].

	Obtain the required server IDs:

	Extract the IDs manually

	Use compact listing:

$ decapod server get-all --compact
"machine_id","version","fqdn","username","default_ip","interface=mac=ipv4=ipv6","..."
"015fd324-4437-4f28-9f4b-7e3a90bdc30f","1","chief-gull.maas","ansible","10.10.0.9","ens3=52:54:00:29:14:22=10.10.0.9=fe80::5054:ff:fe29:1422"
"7e791f07-845e-4d70-bff1-c6fad6bfd7b3","1","exotic-swift.maas","ansible","10.10.0.11","ens3=52:54:00:05:b0:54=10.10.0.11=fe80::5054:ff:fe05:b054"
"70753205-3e0e-499d-b019-bd6294cfbe0f","1","helped-pig.maas","ansible","10.10.0.12","ens3=52:54:00:01:7c:1e=10.10.0.12=fe80::5054:ff:fe01:7c1e"
"40b96868-205e-48a2-b8f6-3e3fcfbc41ef","1","joint-feline.maas","ansible","10.10.0.10","ens3=52:54:00:4a:c3:6d=10.10.0.10=fe80::5054:ff:fe4a:c36d"
"8dd33842-fee6-4ec7-a1e5-54bf6ae24710","1","polite-rat.maas","ansible","10.10.0.8","ens3=52:54:00:d4:da:29=10.10.0.8=fe80::5054:ff:fed4:da29"

Where machine_id is the server ID.

	Use the jq tool mentioned above:

$ decapod server get-all | jq -rc '.[]|.id'
015fd324-4437-4f28-9f4b-7e3a90bdc30f
7e791f07-845e-4d70-bff1-c6fad6bfd7b3
70753205-3e0e-499d-b019-bd6294cfbe0f
40b96868-205e-48a2-b8f6-3e3fcfbc41ef
8dd33842-fee6-4ec7-a1e5-54bf6ae24710

Note

We recommend using the jq tool as the compact representation shows
only a limited amount of information. Using jq allows you to extract
any certain data.

	At this step you should have all the required data to create a playbook
configuration:

	The cluster name (can be any)

	The playbook name

	The cluster ID

	The server IDs

	Create a playbook configuration using the following command:

$ decapod playbook-configuration create <NAME> <PLAYBOOK> <CLUSTER_ID> [SERVER_IDS]...

Example:

$ decapod playbook-configuration create deploy cluster_deploy f2621e71-76a3-4e1a-8b11-fa4ffa4a6958 015fd324-4437-4f28-9f4b-7e3a90bdc30f \
7e791f07-845e-4d70-bff1-c6fad6bfd7b3 70753205-3e0e-499d-b019-bd6294cfbe0f 40b96868-205e-48a2-b8f6-3e3fcfbc41ef 8dd33842-fee6-4ec7-a1e5-54bf6ae24710
{
 "data": {
 "cluster_id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "configuration": {
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/decapod_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "journal_collocation": true,
 "journal_size": 100,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "fs.file-max",
 "value": 26234859
 },
 {
 "name": "kernel.pid_max",
 "value": 4194303
 }
],
 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.11": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.12": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.9": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 }
 }
 },
 "clients": [],
 "iscsi_gw": [],
 "mdss": [],
 "mons": [
 "10.10.0.9"
],
 "nfss": [],
 "osds": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.11",
 "10.10.0.8"
],
 "rbdmirrors": [],
 "restapis": [
 "10.10.0.9"
],
 "rgws": []
 }
 },
 "name": "deploy",
 "playbook_id": "cluster_deploy"
 },
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
 "model": "playbook_configuration",
 "time_deleted": 0,
 "time_updated": 1479906402,
 "version": 1
}

Where the playbook configuration ID is fd499a1e-866e-4808-9b89-5f582c6bd29e.

Update a playbook configuration

You may need to update a playbook configuration, for example, to use another
host for the monitor.

To do so, update the playbook model using one of the following ways:

	Edit the playbook and send to stdin of the
decapod playbook-configuration update fd499a1e-866e-4808-9b89-5f582c6bd29e
command where fd499a1e-866e-4808-9b89-5f582c6bd29e is the playbook
configuration ID.

	Run an external editor with the --model-editor option. Using this
option, the Decapod CLI downloads the model and sends its data field to the
editor. After you save and close the editor, the updated model is sent to the
Decapod API. To use this model, verify that your editor is set using the
env | grep EDITOR command.

	Dump JSON with modifications and inject into the --model option.

Important

Avoid updating fields outside of the data field (that is why the
--model-editor option shows only the data field). Sending the whole
model back to the Decapod API allows keeping consistent behavior of the
Decapod API.

To update a playbook configuration:

	Run the decapod playbook-configuration update command with the
--model-editor flag.

Example:

$ decapod playbook-configuration update fd499a1e-866e-4808-9b89-5f582c6bd29e --model-editor
{
 "data": {
 "cluster_id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "configuration": {
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/decapod_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
 "journal_collocation": true,
 "journal_size": 100,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "fs.file-max",
 "value": 26234859
 },
 {
 "name": "kernel.pid_max",
 "value": 4194303
 }
],
 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.11": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.12": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.9": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdc",
 "/dev/vde",
 "/dev/vdd",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 }
 }
 },
 "clients": [],
 "iscsi_gw": [],
 "mdss": [],
 "mons": [
 "10.10.0.8"
],
 "nfss": [],
 "osds": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.11",
 "10.10.0.9"
],
 "rbdmirrors": [],
 "restapis": [
 "10.10.0.8"
],
 "rgws": []
 }
 },
 "name": "deploy",
 "playbook_id": "cluster_deploy"
 },
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
 "model": "playbook_configuration",
 "time_deleted": 0,
 "time_updated": 1479907354,
 "version": 2
}

The example above shows replacing 10.10.0.9 in mons/restapis and
adding it to the OSD list, and also placing the 10.10.0.8 from OSDs to
mons/restapis. As a result, the playbook configuration ID is
fd499a1e-866e-4808-9b89-5f582c6bd29e and the version is 2.

	Save your changes and exit the editor. Proceed to
Execute a playbook configuration.

Execute a playbook configuration

To execute a playbook configuration:

	Run decapod execution create with the playbook configuration
ID and version.

Example:

$ decapod execution create fd499a1e-866e-4808-9b89-5f582c6bd29e 2
{
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "created"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479908503,
 "version": 1
}

Once done, the playbook configuration is in the created state. It takes
some time for the execution to start.

	To verify that the execution has started, use the
decapod execution get command with the execution ID.

Example:

 $ decapod execution get f2fbb668-6c89-42d2-9251-21e0b79ae973
 {
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "started"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479908503,
 "version": 2
}

Once completed, the execution state will turn to completed.

Additionally, you can perform the following actions:

	Track the execution steps using the decapod execution steps
command with the execution ID.

Example:

$ decapod execution steps f2fbb668-6c89-42d2-9251-21e0b79ae973
[
 {
 "data": {
 "error": {},
 "execution_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "name": "add custom repo",
 "result": "skipped",
 "role": "ceph.ceph-common",
 "server_id": "8dd33842-fee6-4ec7-a1e5-54bf6ae24710",
 "time_finished": 1479908609,
 "time_started": 1479908609
 },
 "id": "58359d01b3670f0089d9330b",
 "initiator_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "model": "execution_step",
 "time_deleted": 0,
 "time_updated": 1479908609,
 "version": 1
 },
 {
 "data": {
 "error": {},
 "execution_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "name": "add gluster nfs ganesha repo",
 "result": "skipped",
 "role": "ceph.ceph-common",
 "server_id": "8dd33842-fee6-4ec7-a1e5-54bf6ae24710",
 "time_finished": 1479908609,
 "time_started": 1479908609
 },
 "id": "58359d01b3670f0089d9330c",
 "initiator_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "model": "execution_step",
 "time_deleted": 0,
 "time_updated": 1479908609,
 "version": 1
 }
]

	View the execution history using the
decapod execution get-version-all command with the execution ID.

Example:

$ decapod execution get-version-all f2fbb668-6c89-42d2-9251-21e0b79ae973
[
 {
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "completed"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479909342,
 "version": 3
 },
 {
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "started"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479908503,
 "version": 2
 },
 {
 "data": {
 "playbook_configuration": {
 "id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
 "version": 2
 },
 "state": "created"
 },
 "id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1479908503,
 "version": 1
 }
]

	Once the execution is done, view the entire execution log using the
decapod execution log command with the execution ID.

Example:

$ decapod execution log f2fbb668-6c89-42d2-9251-21e0b79ae973
Using /etc/ansible/ansible.cfg as config file
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_mandatory_vars.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./release.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/facts.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/deploy_monitors.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/start_monitor.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/ceph_keys.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/openstack_config.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/create_mds_filesystems.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/secure_cluster.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/./docker/main.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/checks.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/pre_requisite.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/dirs_permissions.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/create_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/fetch_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/selinux.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/start_docker_monitor.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/docker/copy_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-mon/tasks/calamari.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-agent/tasks/pre_requisite.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-agent/tasks/start_agent.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_mandatory_vars.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./release.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/facts.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml

...

TASK [ceph-restapi : run the ceph rest api docker image] ***********************
task path: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/roles/ceph-restapi/tasks/docker/start_docker_restapi.yml:2
skipping: [10.10.0.8] => {"changed": false, "skip_reason": "Conditional check failed", "skipped": true}

PLAY [rbdmirrors] **
skipping: no hosts matched

PLAY [clients] ***
skipping: no hosts matched

PLAY [iscsigws] **
skipping: no hosts matched

PLAY RECAP ***
10.10.0.10 : ok=61 changed=12 unreachable=0 failed=0
10.10.0.11 : ok=60 changed=12 unreachable=0 failed=0
10.10.0.12 : ok=60 changed=12 unreachable=0 failed=0
10.10.0.8 : ok=90 changed=19 unreachable=0 failed=0
10.10.0.9 : ok=60 changed=12 unreachable=0 failed=0

Backup and restore procedures

Decapod with decapod-admin tool (a part of admin service)
allows to create backup. If you have dockerized setup (i.e running with
docker-compose) you need to setup backup procedure manually.

Decapod stores its state in MongoDB and in 99% of cases restoring
of DB backups allows to restore all decapod data. Another 1%
is internal container state, like a data from ceph-monitoring [https://github.com/Mirantis/ceph-monitoring/] (check
Ceph monitoring chapter for details). This data
is ok to be lost since Decapod refresh it every 10 minutes by default
(for urgent cases, it is even possbible to collect explicitly with
docker-compose exec controller decapod-collect-data command).

To perform backup, just execute following:

$ docker-compose exec -T admin decapod-admin db backup > db_backup

And to restore:

$ docker exec -i $(docker-compose ps -q admin) admin decapod-admin restore < db_backup

Note

At the time of writing, it was not possible to use
docker-compose exec to perform restore due to the bug in
docker-compose: https://github.com/docker/compose/issues/3352

There are 2 scripts in ./scripts directory, backup_db.py
and restore_db.py which does backup/restore for you.

$./scripts/backup_db.py /var/backup/decapod_db
$./scripts/restore_db.py /var/backup/decapod_db

You can add backup to cron like this:

0 */6 * * * /home/user/decapod_scripts/backup_db.py -p decapod -f /home/user/decapod_runtime/docker-compose.yml /var/backups/decapod/decapod_$(date --iso-8601) > /var/log/cron.log 2>&1

Deploy an operating system on a Ceph node

Warning

Decapod does not perform bare metal provisioning, OS deployment, and
network setup. Perform these operations by external means.

The OS must support cloud-init. Also, it must be possible to run your own
user data. For the available datasources for
cloud-init,
see Datasources [http://cloudinit.readthedocs.io/en/latest/topics/datasources.html].
Alternatively, you can set user data using the
kernel command line [https://github.com/number5/cloud-init/blob/master/doc/sources/kernel-cmdline.txt].
For bare metal provisioning, try MAAS. This section covers the MAAS
installation and OS deployment with this tool.

The section contains the following topics:

	Generate user data for cloud-init

	Deploy OS using MAAS

Note

If you do not want (or cannot) use server discovery for some reason,
please check Ansible playbooks which will prepare machine based on
generated user-data.

https://github.com/Mirantis/ceph-lcm/tree/master/infrastructure_playbooks/server_discovery_playbook

Generate user data for cloud-init

This section contains the following topics:

	Prerequisites

	Generate user data

Prerequisites

Prior to generating the user data for cloud-init, complete the following
steps:

	Verify that your Decapod installation is up and running.

	Obtain the server discovery token. Decapod uses automatic server discovery
and cloud-init is required only for that. To access the Decapod API,
servers will access it using an authentication token with limited
capabilities (posting to the server discovery API endpoint). The server
discovery token is set in the api.server_discovery_token section of the
config.yaml file. Keep this token private. To obtain the token:

$ grep server_discovery_token config.yaml
 server_discovery_token: "7f080dab-d803-4339-9c69-e647f7d6e200"

	Generate an SSH public key. To generate the SSH public key from a private
one, run:

$ ssh-keygen -y -f ansible_ssh_keyfile.pem > ansible_ssh_keyfile.pem.pub

Note

The ansible_ssh_keyfile.pem file should have the 0600 permissions:

$ chmod 0600 ansible_ssh_keyfile.pem

Generate user data

Verify that you have completed the steps described in
Prerequisites.

To generate user data:

Run the following command:

$ decapod -u http://10.10.0.2:9999 cloud-config \
 7f080dab-d803-4339-9c69-e647f7d6e200 ansible_ssh_keyfile.pem.pub

Where the URL is the public URL of the Decapod machine with a correct port.
The servers will send an HTTP request for server discovery using this URL. As
a result, you will obtain a YAML-like user data.

Deploy OS using MAAS

MAAS deployment is not part of this product. Therefore, we cannot guarantee
its robustness. To provision your Ceph nodes manually, skip this section.

The section contains the following topics:

	Prerequisites

	Install MAAS

	Deploy an OS using MAAS

Prerequisites

MAAS installation has the following requirements:

	MAAS has its own DHCP server. To avoid collisions, disable the default one.

	If you plan to run MAAS in a virtual network with libvirt, create a new
network with disabled DHCP, but enabled NAT.

Install MAAS

To install MAAS:

To install MAAS, follow the steps described in:

	Installing a single node MAAS [https://maas.ubuntu.com/docs/install.html#installing-a-single-node-maas].

	Importing the boot images [https://maas.ubuntu.com/docs/install.html#import-the-boot-images].

	Logging in [https://maas.ubuntu.com/docs/maascli.html#logging-in].

Deploy an OS using MAAS

To deploy an operating system using MAAS:

	Encode the user data to base64 and send it to MAAS:

$ decapod -u http://10.10.0.2:9999 cloud-config \
 7f080dab-d803-4339-9c69-e647f7d6e200 ansible_ssh_keyfile.pem.pub \
 | base64 -w 0 > user_data.txt

	Deploy an OS using the required MAAS version.

Note

MAAS 2.0 has non-backward-compatible API changes.

	MAAS 2.0:

	Obtain system_id of the machine to deploy:

$ maas mymaas nodes read

	Deploy the OS:

$ maas mymaas machine deploy {system_id} user_data={base64-encoded of user-data}

Where mymaas is the profile name of the MAAS command line.

	MAAS prior to 2.0:

	Obtain system_id of the machine to deploy:

$ maas prof nodes list

	Deploy the OS:

$ maas mymaas node start {system_id} user_data={base64-encoded of user-data} distro_series={distro series. Eg. trusty}

Where mymaas is the profile name of the MAAS command line.

Supported Ceph packages

Mirantis provides its own Ceph packages with a set of patches that are
not included in the community yet but are crucial for customers and
internal needs. The supported LTS release of Ceph is Jewel [http://docs.ceph.com/docs/master/release-notes/#v10-2-0-jewel]. And the
only supported distribution is 16.04 Xenial Xerus.

Mirantis keeps the patches as minimal and non-intrusive as possible
and tracks the community releases as close as reasonable. To publish
an urgent fix, intermediate releases can be issued. The packages are
available from the following APT repository

deb http://mirror.fuel-infra.org/decapod/ceph/jewel-xenial jewel-xenial main

The following table lists packages provided for upgrades only:

	Ceph release
	Ubuntu release
	APT repository

	Jewel
	14.04
	deb http://mirror.fuel-infra.org/decapod/ceph/jewel-trusty jewel-trusty main

	Hammer [http://docs.ceph.com/docs/master/release-notes/#v0-94-hammer] (0.94.x)
	14.04
	deb http://mirror.fuel-infra.org/decapod/ceph/hammer-trusty hammer-trusty main

	Hammer (0.94.x)
	12.04
	deb http://mirror.fuel-infra.org/decapod/ceph/hammer-precise hammer-precise main

	Firefly [http://docs.ceph.com/docs/master/release-notes/#v0-80-firefly]
	14.04
	deb http://mirror.fuel-infra.org/decapod/ceph/firefly-trusty firefly-trusty main

	Firefly
	12.04
	deb http://mirror.fuel-infra.org/decapod/ceph/firefly-precise firefly-precise main

Important

Packages for old LTS releases and Jewel for Ubuntu 14.04 are intended for
upgrade purposes only and are not maintained other than fixing bugs
hindering the upgrade to Jewel and Ubuntu 16.04.

Note

It is possible and recommended to create and use your own
repository. To do so, please check corresponding playbook and follow
the instructions.

https://github.com/Mirantis/ceph-lcm/tree/master/infrastructure_playbooks/apt_mirror_playbook

This playbook creates only server, please setup webserver like nginx
or caddy to serve static by yourself.

Playbook plugins

Decapod performs Ceph management through plugins. These plugins support
different tasks, such as cluster deployment, adding and removing of OSDs, and
so on.
This section describes the available playbook plugins and the main options
these plugins support.

The section contains the following topics:

	Deploy Ceph cluster

	Add OSD host

	Remove OSD host

	Add monitor host

	Remove montor host

	Purge cluster

	Telegraf integration

	Telegraf purging

Deploy Ceph cluster

The Deploy Ceph cluster playbook plugin allows you to deploy an initial Ceph
cluster. The plugin supports all the capabilities and roles of
ceph-ansible.

Note

The majority of configuration options described in this section match the
ceph-ansible settings. For a list of supported parameters, see
official list [https://github.com/ceph/ceph-ansible/blob/master/group_vars/all.yml.sample].

The section contains the following topics:

	Overview

	Parameters and roles

	Configuration example

Overview

The following table shows the general information about the Deploy Ceph
cluster plugin:

	Property
	Value

	ID
	cluster_deploy

	Name
	Deploy Ceph Cluster

	Required Server List
	Yes

The following table lists the available hints for the plugin:

	Hint
	Title
	Default value
	Description

	dmcrypt
	Use dmcrypted OSDs
	False
	Defines the dmcrypt usage
for OSD devices.

	collocation
	Collocate OSD data and
journal on same devices
	False
	Defines whether the journal
and data have to be placed
on the same devices.

	rest_api
	Setup Ceph RestAPI
	False
	Defines the RestAPI
installation for Ceph.

	mon_count
	The number of monitors
to deploy
	3
	Defines the number of
monitors.

The Deploy Ceph cluster plugin is tightly coupled with ceph-ansible
versions. The following table shows the mapping between the plugin version and
the corresponding version of ceph-ansible.

	Plugin version
	ceph-ansible version

	>=0.1,<1.0
	v1.0.8 [https://github.com/ceph/ceph-ansible/tree/v1.0.8]

	>=1.0,<1.1
	v2.1.9 [https://github.com/ceph/ceph-ansible/tree/v2.1.9]

Parameters and roles

The Deploy Ceph cluster plugin has the following parameters:

	ceph_facts_template

	The path to custom Ceph facts template. Decapod deploys the custom facts
module on the nodes that collect the Ceph-related facts. Usually, you do not
need to configure this parameter.

	ceph_stable

	Set to true if it is required to install Ceph from the stable repository.

	ceph_stable_repo, ceph_stable_release, ceph_stable_distro_source

	The options define the repository where to obtain Ceph. In case of Ubuntu
Xenial, you will get the following repository string:

deb {{ ceph_stable_repo }} {{ ceph_stable_distro_source }} main

	cluster

	Defines the cluster name.

Important

Some tools require the ceph cluster name only. The default name allows
executing the ceph utility without an explicit cluster name and
with the --cluster option.

	cluster_network

	Defines the cluster network [http://docs.ceph.com/docs/jewel/rados/configuration/network-config-ref/].

	copy_admin_key

	Copies the admin key to all nodes. This is required if you want to run the
ceph utility from any cluster node. Keep this option as
true. Otherwise, it may break some playbooks that maintain the lifecycle
after deployment.

	fsid

	The unique identifier for your object store. Since you can run multiple
clusters on the same hardware, you must specify the unique ID of the object
store when bootstrapping a monitor.

	journal_collocation

	Defines if the OSD will place its journal on the same disk with the data. It
is false by default.

If you want to have separate disks for journals (SSDs) and data (rotationals),
set this to false. Also, set raw_multi_journal to true and list
journal disks as raw_journal_devices.

	raw_multi_journal

	This option is the opposite to journal_collocation.

Note

The raw_multi_journal and journal_collocation options must have
different values. For example, if journal_collocation is set to
true, set raw_multi_journal to false.

	dmcrypt_journal_collocation

	This option has the same meaning as journal_collocation but both journal
and data disks are encrypted by dmcrypt.

	dmcrypt_dedicated_journal

	This option has the same meaning as journal_collocation set to false.
If dmcrypt_dedicated_journal is set to true, the journal and data will
be placed on different disks and encrypted with dmcrypt.

	journal_size

	OSD journal size in megabytes.

	max_open_files

	Sets the number of open files to have on a node.

	nfs_file_gw

	Set to true to enable file access through NFS. Requires an MDS role.

	nfs_obj_gw

	Set to true to enable object access through NFS. Requires an RGW role.

	os_tuning_params

	Different kernels parameters. This is the list of dicts where name is the
name of the parameter and value is the value.

	public_network

	Defines the public network [http://docs.ceph.com/docs/jewel/rados/configuration/network-config-ref].

	monitor_interface

	The option defines the NIC on the host that is connected to the public
network.

	devices

	Defines the disks where to place the OSD data. If collocation is enabled, then
journal devices, raw_journal_devices, are not used.

	raw_journal_devices

	Defines the disks where to place the journals for OSDs. If collocation is
enabled, this option is not used.

ceph-ansible supports two deployment modes: with journal collocation and
on separate drives, and also with dmcrypt and without. Therefore, there are
four possible combinations.

The following table lists the possible combinations:

	Collocation
	Dmcrypt
	journal_collocation
	raw_multi_journal
	dmcrypt_journal_collocation
	dmcrypt_dedicated_journal
	Data devices option name
	Journal devices option name

	true
	true
	false
	true
	false
	false
	devices
	–

	true
	false
	true
	false
	false
	false
	devices
	–

	false
	true
	false
	false
	false
	true
	devices
	raw_journal_devices

	false
	false
	false
	true
	false
	false
	devices
	raw_journal_devices

Consider the different meaning of devices and raw_journal_devices in
different modes: if no collocation is defined, then devices means disks
with data. Journals are placed on raw_journal_devices disks. Otherwise,
define devices only. In this case, the journal will be placed on the same
device as the data.

Configuration example

The following is an example of the Deploy Ceph cluster plugin configuration:

{
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/decapod_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "dmcrypt_dedicated_journal": true,
 "dmcrypt_journal_collocation": false,
 "fsid": "e0b82a0d-b669-4787-8f4d-84f6733e45cd",
 "journal_collocation": false,
 "journal_size": 512,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "kernel.pid_max",
 "value": 4194303
 },
 {
 "name": "fs.file-max",
 "value": 26234859
 }
],
 "public_network": "10.10.0.0/24",
 "raw_multi_journal": false
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 },
 "10.10.0.11": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 },
 "10.10.0.12": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 },
 "10.10.0.9": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vde",
 "/dev/vdb"
],
 "monitor_interface": "ens3",
 "raw_journal_devices": [
 "/dev/vdd",
 "/dev/vdc"
]
 }
 }
 },
 "clients": [],
 "iscsi_gw": [],
 "mdss": [],
 "mons": [
 "10.10.0.9"
],
 "nfss": [],
 "osds": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.11",
 "10.10.0.8"
],
 "rbdmirrors": [],
 "restapis": [
 "10.10.0.9"
],
 "rgws": []
 }
}

Add OSD host

The Add OSD host playbook plugin allows you to add a new host with OSDs to a
cluster. The plugin supports all the capabilities and roles of
ceph-ansible.

Note

The majority of configuration options described in this section match the
ceph-ansible settings. For a list of supported parameters, see
official list [https://github.com/ceph/ceph-ansible/blob/master/group_vars/osds.yml.sample].

The section contains the following topics:

	Overview

	Parameters and roles

	Configuration example

Overview

The following table shows the general information about the Add OSD host
plugin:

	Property
	Value

	ID
	add_osd

	Name
	Add OSD Host

	Required Server List
	Yes

The following table lists the available hints for the plugin:

	Hint
	Title
	Default value
	Description

	dmcrypt
	Use dmcrypted OSDs
	False
	Defines the dmcrypt usage for
OSD devices.

	collocation
	Collocate OSD data
and journal on same
devices
	False
	Defines whether the journal and
data will be placed on the
same devices

The Add OSD host plugin is tightly coupled with ceph-ansible versions.
The following table shows the mapping between the plugin version and the
corresponding version of ceph-ansible.

	Plugin version
	ceph-ansible version

	>=0.1,<1.0
	v1.0.8 [https://github.com/ceph/ceph-ansible/tree/v1.0.8]

	>=1.0,<1.1
	v2.1.9 [https://github.com/ceph/ceph-ansible/tree/v2.1.9]

Parameters and roles

The Add OSD host plugin parameters are mostly the same as the ones for the
Deploy Ceph cluster
plugin. However, the plugin has the following roles:

	mons

	Defines the nodes to deploy monitors.

	osds

	Defines the nodes to deploy OSDs.

Also, there is a limitation on deployment: for consistency and problem
avoidance, Decapod checks version it is going to install. If cluster has
inconsistent versions, deployment is stopped: user has to fix versions
within a cluster. If version user is going to deploy is newer than
installed ones, process is also failing: user has to update cluster
packages first.

There are 2 parameters responsible for that:

ceph_version_verify
This is a boolean setting which checks that strict mode is enabled.
Otherwise (it is set to false) no verification described above is
done.

ceph_version_verify_packagename
The name of the package to check. Usually, you do not need to touch this
setting at all.

Configuration example

The following is an example of the Add OSD host plugin configuration:

{
 "data": {
 "cluster_id": "1597a71f-6619-4db6-9cda-a153f4f19097",
 "configuration": {
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/shrimp_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "1597a71f-6619-4db6-9cda-a153f4f19097",
 "journal_collocation": true,
 "journal_size": 100,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "kernel.pid_max",
 "value": 4194303
 },
 {
 "name": "fs.file-max",
 "value": 26234859
 }
],
 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.2": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.3": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 }
 }
 },
 "mons": [
 "10.10.0.2"
],
 "osds": [
 "10.10.0.3",
],
 }
 },
 "name": "add_osd_name",
 "playbook_id": "add_osd"
 },
 "id": "fd76cea9-3efa-4432-854c-fee30ca79ddb",
 "initiator_id": "9d010f3f-2ec0-4079-ae8c-f46415e2530c",
 "model": "playbook_configuration",
 "time_deleted": 0,
 "time_updated": 1478174220,
 "version": 2
}

Remove OSD host

The Remove OSD host playbook plugin allows you to remove a host with OSDs
from a cluster.

The section contains the following topics:

	Overview

	Configuration example

Overview

The following table shows the general information about the Remove OSD host
plugin:

	Property
	Value

	ID
	remove_osd

	Name
	Remove OSD Host

	Required Server List
	Yes

Configuration example

The following is an example of the Remove OSD host plugin configuration:

{
 "global_vars": {
 "cluster": "ceph"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.12": {
 "ansible_user": "ansible"
 },
 "10.10.0.9": {
 "ansible_user": "ansible"
 }
 }
 },
 "mons": [
 "10.10.0.9"
],
 "osds": [
 "10.10.0.12"
]
 }
}

This playbook has the simplest possible configuration. You only need to define
the monitors and the OSD to remove.

Add monitor host

The Add monitor host playbook plugin allows you to add a new host with
monitors to a cluster. The plugin supports all the capabilities and roles of
ceph-ansible.

Note

The majority of configuration options described in this section match the
ceph-ansible settings. For a list of supported parameters, see
official list [https://github.com/ceph/ceph-ansible/blob/master/group_vars/mons.yml.sample].

The section contains the following topics:

	Overview

	Parameters and roles

	Configuration example

Overview

The following table shows the general information about the Add monitor host
plugin:

	Property
	Value

	ID
	add_mon

	Name
	Add Monitor Host

	Required Server List
	Yes

The Add monitor host plugin is tightly coupled with ceph-ansible
versions. The following table shows the mapping between the plugin version and
the corresponding version of ceph-ansible.

	Plugin version
	ceph-ansible version

	>=1.0,<1.1
	v2.1.9 [https://github.com/ceph/ceph-ansible/tree/v2.1.9]

Parameters and roles

The Add monitor host plugin parameters are mostly the same as the ones for
the
Deploy Ceph cluster
plugin. However, the plugin has the following role:

	mons

	Defines the nodes to deploy monitors.

Also, there is a limitation on deployment: for consistency and problem
avoidance, Decapod checks version it is going to install. If cluster has
inconsistent versions, deployment is stopped: user has to fix versions
within a cluster. If version user is going to deploy is newer than
installed ones, process is also failing: user has to update cluster
packages first.

There are 2 parameters responsible for that:

ceph_version_verify
This is a boolean setting which checks that strict mode is enabled.
Otherwise (it is set to false) no verification described above is
done.

ceph_version_verify_packagename
The name of the package to check. Usually, you do not need to touch this
setting at all.

Configuration example

The following is an example of the Add monitor host plugin configuration:

{
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/decapod_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "d5069dc9-05d9-4ef2-bc21-04a938917260",
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "fs.file-max",
 "value": 26234859
 },
 {
 "name": "kernel.pid_max",
 "value": 4194303
 }
],
 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible",
 "monitor_interface": "ens3"
 },
 "10.10.0.12": {
 "ansible_user": "ansible",
 "monitor_interface": "ens3"
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "monitor_interface": "ens3"
 },
 "10.10.0.9": {
 "ansible_user": "ansible",
 "monitor_interface": "ens3"
 }
 }
 },
 "mons": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.8",
 "10.10.0.9"
]
 }
}

Remove montor host

The Remove monitor host playbook plugin allows you to remove a host
with monitor from a cluster.

The section contains the following topics:

	Overview

	Configuration example

Overview

The following table shows the general information about the Remove
monitor host plugin:

	Property
	Value

	ID
	remove_mon

	Name
	Remove monitor host

	Required Server List
	Yes

Please pay attention, that you have to have enough monitor hosts to make
PAXOS quorum.

Configuration example

The following is an example of the Remove monitor host plugin configuration:

{
 "global_vars": {
 "cluster": "ceph"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.12": {
 "ansible_user": "ansible"
 },
 "10.10.0.9": {
 "ansible_user": "ansible"
 }
 }
 },
 "mons": [
 "10.10.0.9",
 "10.10.0.12"
]
 }
}

This playbook has the simplest possible configuration. You only need to define
the monitors you want to remove.

Purge cluster

The Purge cluster playbook plugin allows you to remove a host with OSDs from
a cluster.

The section contains the following topics:

	Overview

	Parameters and roles

	Configuration example

Overview

The following table shows the general information about the Purge cluster
plugin:

	Property
	Value

	ID
	purge_cluster

	Name
	Purge Cluster

	Required Server List
	No

Parameters and roles

The Purge cluster plugin has the following parameter:

	cluster

	Defines the name of the cluster.

Important

Some tools require the ceph cluster name only. The default name allows
executing the ceph utility without an explicit cluster name and
with the --cluster option.

Configuration example

The following is an example of the Purge cluster plugin configuration:

{
 "global_vars": {
 "cluster": "ceph"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.10": {
 "ansible_user": "ansible"
 },
 "10.10.0.11": {
 "ansible_user": "ansible"
 },
 "10.10.0.12": {
 "ansible_user": "ansible"
 },
 "10.10.0.8": {
 "ansible_user": "ansible"
 },
 "10.10.0.9": {
 "ansible_user": "ansible"
 }
 }
 },
 "mons": [
 "10.10.0.9"
],
 "osds": [
 "10.10.0.10",
 "10.10.0.12",
 "10.10.0.11",
 "10.10.0.8"
],
 "restapis": [
 "10.10.0.9"
]
 }
}

This playbook has the simplest possible configuration. You only need to define
the nodes and their roles.

Telegraf integration

The Telegraf integration playbook plugin activates the Ceph metrics in
Telegraf [https://www.influxdata.com/time-series-platform/telegraf/]. These metrics
can be sent to Prometheus, InfluxDB, or any other endpoint.

The section contains the following topics:

	Overview

	Configuration example

Overview

The following table shows the general information about the Telegraf
integration plugin:

	Property
	Value

	ID
	telegraf_integration

	Name
	Telegraf Integration

	Required Server List
	Yes

The plugin uses a standalone Ansible role from Ansible Galaxy. The following
table shows the versions mapping:

	Plugin version
	Ansible Galaxy version

	>=1.0,<1.1
	dj-wasabi.telegraf 0.7.0 [https://galaxy.ansible.com/dj-wasabi/telegraf/]

Configuration example

The following is an example of the Telegraf integration plugin configuration:

{
 "global_vars": {
 "ceph_binary": "/usr/bin/ceph",
 "ceph_config": "/etc/ceph/ceph.conf",
 "ceph_user": "client.admin",
 "configpath": "/etc/telegraf/telegraf.conf",
 "gather_admin_socket_stats": true,
 "gather_cluster_stats": true,
 "install": true,
 "interval": "1m",
 "mon_prefix": "ceph-mon",
 "osd_prefix": "ceph-osd",
 "socket_dir": "/var/run/ceph",
 "socket_suffix": "asock",
 "telegraf_agent_collection_jitter": 0,
 "telegraf_agent_deb_url": "https://dl.influxdata.com/telegraf/releases/telegraf_1.1.2_amd64.deb",
 "telegraf_agent_debug": false,
 "telegraf_agent_flush_interval": 10,
 "telegraf_agent_flush_jitter": 0,
 "telegraf_agent_interval": 10,
 "telegraf_agent_logfile": "",
 "telegraf_agent_metric_batch_size": 1000,
 "telegraf_agent_metric_buffer_limit": 10000,
 "telegraf_agent_omit_hostname": false,
 "telegraf_agent_output": [
 {
 "config": [
 "urls = [\"http://localhost:8086\"]",
 "database = \"telegraf\"",
 "precision = \"s\""
],
 "type": "influxdb"
 }
],
 "telegraf_agent_quiet": false,
 "telegraf_agent_round_interval": true,
 "telegraf_agent_tags": {},
 "telegraf_agent_version": "1.1.2",
 "telegraf_plugins_default": [
 {
 "config": [
 "percpu = true"
],
 "plugin": "cpu"
 },
 {
 "plugin": "disk"
 },
 {
 "plugin": "io"
 },
 {
 "plugin": "mem"
 },
 {
 "plugin": "net"
 },
 {
 "plugin": "system"
 },
 {
 "plugin": "swap"
 },
 {
 "plugin": "netstat"
 }
],
 "telegraf_plugins_extra": {}
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.0.0.20": {
 "ansible_user": "ansible"
 }
 }
 },
 "telegraf": [
 "10.0.0.20"
]
 }
}

See also

	Telegraf Ceph Input Source [https://github.com/influxdata/telegraf/tree/master/plugins/inputs/ceph].

	Installing and configuring Telegraf <official documentation [https://galaxy.ansible.com/dj-wasabi/telegraf/].

Telegraf purging

While Telegraf integration plugin installs and configures
Telegraf, this plugin will revert it back uninstalling Telegraf or its
managed section from the config.

The section contains the following topics:

	Overview

	Configuration example

Overview

The following table shows the general information about the Telegraf
purging plugin:

	Property
	Value

	ID
	purge_telegraf

	Name
	Telegraf removal

	Required Server List
	Yes

Hints

	remove_config_section_only

	If this hint is set to true then plugin will remove corresponding
section, created by Telegraf integration plugin from
/etc/telegraf/telegraf.conf.

Configuration example

The following is an example of the Telegraf purging plugin configuration:

{
 "global_vars": {
 "configpath": "/etc/telegraf/telegraf.conf",
 "remove_config_section_only": false
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.0.0.20": {
 "ansible_user": "ansible"
 }
 }
 },
 "telegraf": [
 "10.0.0.20"
]
 }
}

Upgrade Guide

This chapter describes in details how to upgrade Decapod from one
version to another. Please backup before starting any upgrade procedure.
Also, please pay attention that in most cases (if there are no explicit
chapters or recommendations) upgrade is possible only from previous
version to current one. If you are going to upgrade from version X to
version X+3, you need to upgrade to X+1 first, then to X+2 and
only after that to X+3.

Contents

	Upgrade from 0.1.x to 1.0
	Initial Preparations

	Backup Database

	Extract Config Files

	Get Images for Version 1.0

	Stop and Remove Containers for Version 0.1.x

	Run 1.0.x Version

	Set MongoDB Backward Incompatibility (optional)

	Change root Password (optional)

Upgrade from 0.1.x to 1.0

This chapter describes upgrade procedure from versions 0.1.x to
1.0.x.

The major issues with upgrading from 0.1.x to 1.0 are:

	During development of 1.0 Decapod changed its name from Shrimp.
It means that naming of some defaults was changed from shrimp to
decapod. For example, name of the database in default config was
changed.

	Configuration files are not stored in containers anymore, but
injected using volumes. It means that Decapod images are same
in testing and production.

	Usage of shell scripts from ./scripts directory is
deprecated, because Decapod got admin service.

	MongoDB was updated from 3.2.x to 3.4.x.

Changes in existing Ceph deployments are not required.

This guide tries to cover all these obstacles. It is split into 2 parts:
action, required to perform on version 0.1 and actions for version 1.0.

Initial Preparations

To start, we need to have latest versions of 1.0 release series. To
obtain them, please clone repositories on machine which is used to run
Decapod.

$ git clone -b stable-1.0 --recurse-submodules https://github.com/Mirantis/ceph-lcm.git ~/decapod

After that, please create directory where config files and private keys
for decapod should be stored. You may choose any directory you like.

$ mkdir -p ~/decapod_runtime

The last step is to identify the name of the project. If you run Shrimp
with explicit project name using docker-compose (e.g docker-compose -p
shrimp up), then shrimp has to be your projectname. If you didn’t
set any, then you need to fetch it.

Execute next command from the directory where you run
docker-compose to start Shrimp.

$ docker-compose ps | grep api | cut -f 1 -d '_' | sort -u
shrimp

For simplicity, please assume that the name of the project is PROJ.

Note

If you do not want to pass -p all the
time you use docker-compose, please use
COMPOSE_PROJECT_NAME environment variable [https://docs.docker.com/compose/reference/envvars/#/composeprojectname].

Now let’s copy required files in your ~/decapod_runtime directory.

$ cp ~/decapod/{.env,docker-compose.yml,docker-compose.override.yml} ~/decapod_runtime

And let’s set the path to SSH private key in .env file.

$ sed -i "s?^DECAPOD_SSH_PRIVATE_KEY=.*?DECAPOD_SSH_PRIVATE_KEY=$HOME/decapod_runtime/id_rsa?" ~/decapod_runtime/.env

If you are using the name other than id_rsa for private key, use
it.

Backup Database

We will create 2 backups:

	pre_upgrade

	This will have a backup of data before any other action.

	pre_upgrade_renamed

	This will have a backup in case if you want to use default config
from 1.0 and do not port existing one.

Create pre_upgrade Backup

From the directory where you run Shrimp, please execute following
command. Please, pay attention to the fact that PROJ is listed
as lowercase proj here (this is how docker-compose is
converting project name to container name).

$ docker exec -i proj_database_1 mongodump --gzip --archive --ssl --sslAllowInvalidCertificates > ~/pre_upgrade
2017-03-01T14:21:52.856+0000 writing shrimp.migration_script to archive on stdout
2017-03-01T14:21:52.857+0000 writing shrimp.role to archive on stdout
2017-03-01T14:21:52.857+0000 writing shrimp.lock to archive on stdout
2017-03-01T14:21:52.857+0000 writing shrimp.user to archive on stdout
2017-03-01T14:21:52.857+0000 done dumping shrimp.migration_script (3 documents)
2017-03-01T14:21:52.860+0000 writing shrimp.cluster to archive on stdout
2017-03-01T14:21:52.862+0000 done dumping shrimp.cluster (1 document)
2017-03-01T14:21:52.866+0000 writing shrimp.server to archive on stdout
2017-03-01T14:21:52.867+0000 done dumping shrimp.server (0 documents)
2017-03-01T14:21:52.869+0000 done dumping shrimp.user (1 document)
2017-03-01T14:21:52.875+0000 writing shrimp.kv to archive on stdout
2017-03-01T14:21:52.876+0000 writing shrimp.execution_step to archive on stdout
2017-03-01T14:21:52.876+0000 done dumping shrimp.execution_step (0 documents)
2017-03-01T14:21:52.881+0000 writing shrimp.task to archive on stdout
2017-03-01T14:21:52.882+0000 done dumping shrimp.lock (1 document)
2017-03-01T14:21:52.882+0000 done dumping shrimp.kv (0 documents)
2017-03-01T14:21:52.882+0000 done dumping shrimp.task (0 documents)
2017-03-01T14:21:52.887+0000 writing shrimp.execution to archive on stdout
2017-03-01T14:21:52.888+0000 done dumping shrimp.role (1 document)
2017-03-01T14:21:52.889+0000 done dumping shrimp.execution (0 documents)
2017-03-01T14:21:52.891+0000 writing shrimp.token to archive on stdout
2017-03-01T14:21:52.892+0000 writing shrimp.playbook_configuration to archive on stdout
2017-03-01T14:21:52.894+0000 done dumping shrimp.token (0 documents)
2017-03-01T14:21:52.894+0000 done dumping shrimp.playbook_configuration (0 documents)

Important

If you want to restore database for any reason, please execute following:

$ docker exec -i proj_database_1 mongorestore --drop --gzip --archive --ssl --sslAllowInvalidCertificates < ~/pre_upgrade
2017-03-01T14:26:19.268+0000 creating intents for archive
2017-03-01T14:26:19.309+0000 reading metadata for shrimp.migration_script from archive on stdin
2017-03-01T14:26:19.465+0000 restoring shrimp.migration_script from archive on stdin
2017-03-01T14:26:19.469+0000 restoring indexes for collection shrimp.migration_script from metadata
2017-03-01T14:26:19.469+0000 finished restoring shrimp.migration_script (3 documents)
2017-03-01T14:26:19.539+0000 reading metadata for shrimp.cluster from archive on stdin
2017-03-01T14:26:19.728+0000 restoring shrimp.cluster from archive on stdin
2017-03-01T14:26:19.735+0000 restoring indexes for collection shrimp.cluster from metadata
2017-03-01T14:26:20.010+0000 finished restoring shrimp.cluster (1 document)
2017-03-01T14:26:20.206+0000 reading metadata for shrimp.server from archive on stdin
2017-03-01T14:26:20.306+0000 reading metadata for shrimp.user from archive on stdin
2017-03-01T14:26:20.507+0000 restoring shrimp.server from archive on stdin
2017-03-01T14:26:20.509+0000 restoring indexes for collection shrimp.server from metadata
2017-03-01T14:26:20.731+0000 restoring shrimp.user from archive on stdin
2017-03-01T14:26:21.580+0000 restoring indexes for collection shrimp.user from metadata
2017-03-01T14:26:21.580+0000 finished restoring shrimp.server (0 documents)
2017-03-01T14:26:21.707+0000 reading metadata for shrimp.execution_step from archive on stdin
2017-03-01T14:26:21.732+0000 reading metadata for shrimp.lock from archive on stdin
2017-03-01T14:26:22.119+0000 finished restoring shrimp.user (1 document)
2017-03-01T14:26:22.374+0000 restoring shrimp.execution_step from archive on stdin
2017-03-01T14:26:22.376+0000 restoring indexes for collection shrimp.execution_step from metadata
2017-03-01T14:26:22.579+0000 restoring shrimp.lock from archive on stdin
2017-03-01T14:26:22.666+0000 finished restoring shrimp.execution_step (0 documents)
2017-03-01T14:26:22.724+0000 reading metadata for shrimp.kv from archive on stdin
2017-03-01T14:26:22.724+0000 restoring indexes for collection shrimp.lock from metadata
2017-03-01T14:26:22.790+0000 reading metadata for shrimp.task from archive on stdin
2017-03-01T14:26:22.824+0000 reading metadata for shrimp.role from archive on stdin
2017-03-01T14:26:23.016+0000 restoring shrimp.kv from archive on stdin
2017-03-01T14:26:23.018+0000 restoring indexes for collection shrimp.kv from metadata
2017-03-01T14:26:23.208+0000 finished restoring shrimp.lock (1 document)
2017-03-01T14:26:23.440+0000 restoring shrimp.task from archive on stdin
2017-03-01T14:26:23.443+0000 restoring indexes for collection shrimp.task from metadata
2017-03-01T14:26:23.616+0000 restoring shrimp.role from archive on stdin
2017-03-01T14:26:23.745+0000 finished restoring shrimp.kv (0 documents)
2017-03-01T14:26:23.938+0000 finished restoring shrimp.task (0 documents)
2017-03-01T14:26:24.024+0000 reading metadata for shrimp.execution from archive on stdin
2017-03-01T14:26:24.024+0000 restoring indexes for collection shrimp.role from metadata
2017-03-01T14:26:24.090+0000 reading metadata for shrimp.token from archive on stdin
2017-03-01T14:26:24.146+0000 reading metadata for shrimp.playbook_configuration from archive on stdin
2017-03-01T14:26:24.407+0000 restoring shrimp.execution from archive on stdin
2017-03-01T14:26:24.410+0000 restoring indexes for collection shrimp.execution from metadata
2017-03-01T14:26:24.782+0000 finished restoring shrimp.role (1 document)
2017-03-01T14:26:24.991+0000 restoring shrimp.token from archive on stdin
2017-03-01T14:26:24.993+0000 restoring indexes for collection shrimp.token from metadata
2017-03-01T14:26:25.275+0000 restoring shrimp.playbook_configuration from archive on stdin
2017-03-01T14:26:25.277+0000 restoring indexes for collection shrimp.playbook_configuration from metadata
2017-03-01T14:26:25.473+0000 finished restoring shrimp.execution (0 documents)
2017-03-01T14:26:25.584+0000 finished restoring shrimp.token (0 documents)
2017-03-01T14:26:25.852+0000 finished restoring shrimp.playbook_configuration (0 documents)
2017-03-01T14:26:25.852+0000 done

Create pre_upgrade_renamed Backup

Since project was renamed from Shrimp to Decapod during development
of release 1.0, default database name was also changed from shrimp
to decapod. If you want to use new name and keep running with
default config, then please rename it in Mongo DB doing following:

$ docker-compose -p PROJ exec database moshell
MongoDB shell version: 3.2.10
connecting to: false
2017-02-14T06:38:15.400+0000 W NETWORK [thread1] The server certificate does not match the host name 127.0.0.1
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
 http://docs.mongodb.org/
Questions? Try the support group
 http://groups.google.com/group/mongodb-user
Server has startup warnings:
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten]
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent_hugepage/enabled is 'always'.
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten] ** We suggest setting it to 'never'
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten]
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent_hugepage/defrag is 'always'.
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten] ** We suggest setting it to 'never'
2017-02-14T06:20:54.806+0000 I CONTROL [initandlisten]
> db.copyDatabase("shrimp", "decapod", "localhost")
{ "ok" : 1 }
> use shrimp
switched to db shrimp
> db.dropDatabase()
{ "dropped" : "shrimp", "ok" : 1 }

The command above will rename database shrimp to decapod keeping all
the data. After that, do new backup as described above:

$ docker exec -i proj_database_1 mongodump --gzip --archive --ssl --sslAllowInvalidCertificates > ~/pre_upgrade_renamed
2017-03-01T14:28:36.830+0000 writing decapod.user to archive on stdout
2017-03-01T14:28:36.831+0000 writing decapod.lock to archive on stdout
2017-03-01T14:28:36.831+0000 writing decapod.role to archive on stdout
2017-03-01T14:28:36.832+0000 writing decapod.migration_script to archive on stdout
2017-03-01T14:28:36.833+0000 done dumping decapod.user (1 document)
2017-03-01T14:28:36.845+0000 writing decapod.cluster to archive on stdout
2017-03-01T14:28:36.845+0000 done dumping decapod.cluster (1 document)
2017-03-01T14:28:36.846+0000 done dumping decapod.lock (1 document)
2017-03-01T14:28:36.852+0000 done dumping decapod.role (1 document)
2017-03-01T14:28:36.852+0000 writing decapod.kv to archive on stdout
2017-03-01T14:28:36.853+0000 done dumping decapod.migration_script (3 documents)
2017-03-01T14:28:36.854+0000 writing decapod.execution_step to archive on stdout
2017-03-01T14:28:36.855+0000 done dumping decapod.kv (0 documents)
2017-03-01T14:28:36.859+0000 writing decapod.server to archive on stdout
2017-03-01T14:28:36.862+0000 writing decapod.task to archive on stdout
2017-03-01T14:28:36.862+0000 writing decapod.playbook_configuration to archive on stdout
2017-03-01T14:28:36.862+0000 done dumping decapod.execution_step (0 documents)
2017-03-01T14:28:36.862+0000 done dumping decapod.playbook_configuration (0 documents)
2017-03-01T14:28:36.862+0000 done dumping decapod.server (0 documents)
2017-03-01T14:28:36.869+0000 writing decapod.token to archive on stdout
2017-03-01T14:28:36.869+0000 done dumping decapod.task (0 documents)
2017-03-01T14:28:36.870+0000 done dumping decapod.token (0 documents)
2017-03-01T14:28:36.872+0000 writing decapod.execution to archive on stdout
2017-03-01T14:28:36.873+0000 done dumping decapod.execution (0 documents)

Extract Config Files

If you already have a configuration files from old version, please
collect them in some directory (e.g ~/decapod_runtime). Decapod
version 1.0.x and newer will have default files stored in containers but
you need to mount your own if you’ve changed some defaults.

If you already have all files, mentioned
in documentation on version 0.1 [http://decapod.readthedocs.io/en/stable-0.1/install-and-configure/build-images.html#ssh-private-keys]
in ~/decapod_runtime, you can skip this section and proceed
to Stop and Remove Containers for Version 0.1.x.

Otherwise, execute commands mentioned below to collect required files.
These commands should be executed from the same directory which you are
using to run Shrimp 0.1:

$ mkdir ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q api):/etc/shrimp/config.yaml" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q controller):/root/.ssh/id_rsa" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q frontend):/ssl/dhparam.pem" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q frontend):/ssl/ssl.crt" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q frontend):/ssl/ssl.key" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q database):/certs/mongodb.pem" ~/decapod_runtime
$ docker cp "$(docker-compose -p PROJ ps -q database):/certs/mongodb-ca.crt" ~/decapod_runtime

If you do not have generated any files mentioned above by yourself and
used defaults, there is not need to copy them: all of them will be
stored in correct places in 1.0.x images. If you’ve modified any of
config.yaml or id_rsa (SSH private key for Ansible),
please copy them.

Get Images for Version 1.0

Please follow Install and configure Decapod chapter to get new images.
And remember that we have required files in ~/decapod_runtime.
Repository for version 1.0 is cloned in ~/decapod as mentioned
in Initial Preparations.

Stop and Remove Containers for Version 0.1.x

Since Docker containers are stateless and we have a backup of the state
(DB backup), the most easiest and safe method of updating is to drop
existing containers and start new ones.

From the directory where you run Shrimp do the following:

$ docker-compose -p PROJ down -v

Run 1.0.x Version

Note

The rest of operations would be performed from
~/decapod_runtime directory so please cd into.

$ docker-compose -p PROJ up --remove-orphans -d

The next step is to restore DB:

$ docker exec -i $(docker-compose -p PROJ ps -q admin) decapod-admin db restore < ~/pre_upgrade_renamed
2017-03-01T14:32:16.139+0000 preparing collections to restore from
2017-03-01T14:32:16.179+0000 reading metadata for decapod.user from archive on stdin
2017-03-01T14:32:16.322+0000 restoring decapod.user from archive on stdin
2017-03-01T14:32:16.325+0000 restoring indexes for collection decapod.user from metadata
2017-03-01T14:32:16.781+0000 finished restoring decapod.user (1 document)
2017-03-01T14:32:16.781+0000 reading metadata for decapod.cluster from archive on stdin
2017-03-01T14:32:16.931+0000 restoring decapod.cluster from archive on stdin
2017-03-01T14:32:16.934+0000 restoring indexes for collection decapod.cluster from metadata
2017-03-01T14:32:16.936+0000 reading metadata for decapod.lock from archive on stdin
2017-03-01T14:32:17.217+0000 finished restoring decapod.cluster (1 document)
2017-03-01T14:32:17.406+0000 restoring decapod.lock from archive on stdin
2017-03-01T14:32:17.415+0000 restoring indexes for collection decapod.lock from metadata
2017-03-01T14:32:17.417+0000 reading metadata for decapod.role from archive on stdin
2017-03-01T14:32:17.629+0000 finished restoring decapod.lock (1 document)
2017-03-01T14:32:17.788+0000 restoring decapod.role from archive on stdin
2017-03-01T14:32:17.790+0000 reading metadata for decapod.migration_script from archive on stdin
2017-03-01T14:32:17.922+0000 restoring decapod.migration_script from archive on stdin
2017-03-01T14:32:17.923+0000 restoring indexes for collection decapod.role from metadata
2017-03-01T14:32:17.925+0000 reading metadata for decapod.kv from archive on stdin
2017-03-01T14:32:18.133+0000 no indexes to restore
2017-03-01T14:32:18.133+0000 finished restoring decapod.migration_script (3 documents)
2017-03-01T14:32:18.133+0000 finished restoring decapod.role (1 document)
2017-03-01T14:32:18.265+0000 restoring decapod.kv from archive on stdin
2017-03-01T14:32:18.267+0000 restoring indexes for collection decapod.kv from metadata
2017-03-01T14:32:18.267+0000 reading metadata for decapod.execution_step from archive on stdin
2017-03-01T14:32:18.473+0000 restoring decapod.execution_step from archive on stdin
2017-03-01T14:32:18.476+0000 restoring indexes for collection decapod.execution_step from metadata
2017-03-01T14:32:18.476+0000 reading metadata for decapod.playbook_configuration from archive on stdin
2017-03-01T14:32:18.599+0000 finished restoring decapod.kv (0 documents)
2017-03-01T14:32:18.908+0000 restoring decapod.playbook_configuration from archive on stdin
2017-03-01T14:32:18.910+0000 restoring indexes for collection decapod.playbook_configuration from metadata
2017-03-01T14:32:18.910+0000 reading metadata for decapod.server from archive on stdin
2017-03-01T14:32:18.981+0000 finished restoring decapod.execution_step (0 documents)
2017-03-01T14:32:19.135+0000 finished restoring decapod.playbook_configuration (0 documents)
2017-03-01T14:32:19.342+0000 restoring decapod.server from archive on stdin
2017-03-01T14:32:19.344+0000 restoring indexes for collection decapod.server from metadata
2017-03-01T14:32:19.344+0000 reading metadata for decapod.task from archive on stdin
2017-03-01T14:32:19.511+0000 restoring decapod.task from archive on stdin
2017-03-01T14:32:19.513+0000 restoring indexes for collection decapod.task from metadata
2017-03-01T14:32:19.513+0000 reading metadata for decapod.token from archive on stdin
2017-03-01T14:32:20.123+0000 finished restoring decapod.server (0 documents)
2017-03-01T14:32:20.327+0000 finished restoring decapod.task (0 documents)
2017-03-01T14:32:20.494+0000 restoring decapod.token from archive on stdin
2017-03-01T14:32:20.497+0000 restoring indexes for collection decapod.token from metadata
2017-03-01T14:32:20.497+0000 reading metadata for decapod.execution from archive on stdin
2017-03-01T14:32:20.585+0000 finished restoring decapod.token (0 documents)
2017-03-01T14:32:20.820+0000 restoring decapod.execution from archive on stdin
2017-03-01T14:32:20.823+0000 restoring indexes for collection decapod.execution from metadata
2017-03-01T14:32:21.008+0000 finished restoring decapod.execution (0 documents)
2017-03-01T14:32:21.008+0000 done

or, if you skip renaming of database:

$ docker exec -i (docker-compose -p PROJ ps admin) decapod-admin db restore < ~/pre_upgrade

Now we need to apply migrations:

$ docker-compose -p PROJ exec admin decapod-admin migration apply
2017-02-14 07:04:12 [DEBUG] (lock.py:118): Lock applying_migrations was acquire by locker 5ebb8d44-2919-4913-85f8-47e160d02207
2017-02-14 07:04:12 [DEBUG] (lock.py:183): Prolong thread for locker applying_migrations of lock 5ebb8d44-2919-4913-85f8-47e160d02207 has been started. Thread MongoLock prolonger 5ebb8d44-2919-4913-85f8-47e160d02207 for applying_migrations, ident 140234729555712
2017-02-14 07:04:12 [INFO] (migration.py:123): Run migration 0003_native_ttl_index.py
2017-02-14 07:04:12 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0003_native_ttl_index.py. Pid 40
2017-02-14 07:04:13 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0003_native_ttl_index.py has been finished. Exit code 0
2017-02-14 07:04:13 [INFO] (migration.py:277): Save result of 0003_native_ttl_index.py migration (result MigrationState.ok)
2017-02-14 07:04:13 [INFO] (migration.py:123): Run migration 0004_migrate_to_native_ttls.py
2017-02-14 07:04:13 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0004_migrate_to_native_ttls.py. Pid 48
2017-02-14 07:04:14 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0004_migrate_to_native_ttls.py has been finished. Exit code 0
2017-02-14 07:04:14 [INFO] (migration.py:277): Save result of 0004_migrate_to_native_ttls.py migration (result MigrationState.ok)
2017-02-14 07:04:14 [INFO] (migration.py:123): Run migration 0005_index_cluster_data.py
2017-02-14 07:04:14 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0005_index_cluster_data.py. Pid 56
2017-02-14 07:04:16 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0005_index_cluster_data.py has been finished. Exit code 0
2017-02-14 07:04:16 [INFO] (migration.py:277): Save result of 0005_index_cluster_data.py migration (result MigrationState.ok)
2017-02-14 07:04:16 [INFO] (migration.py:123): Run migration 0006_create_cluster_data.py
2017-02-14 07:04:16 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0006_create_cluster_data.py. Pid 64
2017-02-14 07:04:17 [DEBUG] (lock.py:164): Lock applying_migrations was proloned by locker 5ebb8d44-2919-4913-85f8-47e160d02207.
2017-02-14 07:04:17 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0006_create_cluster_data.py has been finished. Exit code 0
2017-02-14 07:04:17 [INFO] (migration.py:277): Save result of 0006_create_cluster_data.py migration (result MigrationState.ok)
2017-02-14 07:04:17 [INFO] (migration.py:123): Run migration 0007_add_external_id_to_user.py
2017-02-14 07:04:17 [INFO] (migration.py:198): Run /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0007_add_external_id_to_user.py. Pid 72
2017-02-14 07:04:18 [INFO] (migration.py:203): /usr/local/lib/python3.5/dist-packages/decapod_admin/migration_scripts/0007_add_external_id_to_user.py has been finished. Exit code 0
2017-02-14 07:04:18 [INFO] (migration.py:277): Save result of 0007_add_external_id_to_user.py migration (result MigrationState.ok)
2017-02-14 07:04:18 [DEBUG] (lock.py:202): Prolong thread for locker applying_migrations of lock 5ebb8d44-2919-4913-85f8-47e160d02207 has been stopped. Thread MongoLock prolonger 5ebb8d44-2919-4913-85f8-47e160d02207 for applying_migrations, ident 140234729555712
2017-02-14 07:04:18 [DEBUG] (lock.py:124): Try to release lock applying_migrations by locker 5ebb8d44-2919-4913-85f8-47e160d02207.
2017-02-14 07:04:18 [DEBUG] (lock.py:140): Lock applying_migrations was released by locker 5ebb8d44-2919-4913-85f8-47e160d02207.

Set MongoDB Backward Incompatibility (optional)

This is optional part but if you want, you can set MongoDB to be
non-backward compatible to previous release. To do that, please execute
following:

$ docker-compose -p PROJ exec database moshell
MongoDB server version: 3.4.2
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
 http://docs.mongodb.org/
Questions? Try the support group
 http://groups.google.com/group/mongodb-user
Server has startup warnings:
2017-02-14T07:00:13.729+0000 I STORAGE [initandlisten]
2017-02-14T07:00:13.730+0000 I STORAGE [initandlisten] ** WARNING: Using the XFS filesystem is strongly recommended with the WiredTiger storage engine
2017-02-14T07:00:13.730+0000 I STORAGE [initandlisten] ** See http://dochub.mongodb.org/core/prodnotes-filesystem
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** WARNING: Access control is not enabled for the database.
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** Read and write access to data and configuration is unrestricted.
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent_hugepage/enabled is 'always'.
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** We suggest setting it to 'never'
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent_hugepage/defrag is 'always'.
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten] ** We suggest setting it to 'never'
2017-02-14T07:00:15.199+0000 I CONTROL [initandlisten]
> db.adminCommand({setFeatureCompatibilityVersion: "3.4"})
{ "ok" : 1 }

Change root Password (optional)

Regular reminder: if you haven’t changed password for root user,
you have to do it. Starting from version 1.0 you can do it using admin
service. Please check Password Reset.

Debug snapshot

To simplify communication interface between production and development,
Decapod has a concept of debug snapshot, similar to Fuel snapshots [http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/maintain-environment/create-snapshot.html]: snapshot is an archive which contains all
information, required to debug and troubleshoot problems.

To generate snapshot, just execute following:

$./scripts/debug_snapshot.py snapshot

or, if you have containers only:

$ docker-compose exec -T admin cat /debug-snapshot | python - snapshot

If you use last way, please check docs and set correct settings if required:

$ docker-compose -p myproject exec -T admin cat /debug-snapshot | python - --help
usage: - [-h] [-f COMPOSE_FILE] [-p PROJECT_NAME] snapshot_path

Create debug snapshot for Decapod.

positional arguments:
 snapshot_path Path where to store snapshot (do not append extension,
 we will do it for you).

optional arguments:
 -h, --help show this help message and exit
 -f COMPOSE_FILE, --compose-file COMPOSE_FILE
 path to docker-compose.yml file. (default:
 /vagrant/docker-compose.yml)
 -p PROJECT_NAME, --project-name PROJECT_NAME
 the name of the project. (default: vagrant)

Please find all logs in syslog by ident 'decapod-debug-snapshot'.

$ docker-compose -p myproject exec -T admin cat /debug-snapshot | python - -p myproject snapshot

After execution, you will get snapshot as snapshot_path.*
(snapshot tool will calculate best compression algorithm
available on your platform and use its extension. So you may get
snapshot_path.tar.bz2 or snapshot_path.tar.xz depepnding
on how your Python was built).

Information, stored in the snapshot:

	Backup of the database

	Logs from services

	docker-compose.yml file

	Configuration files from Decapod services (config.yaml)

	Datetimes from services

	Data from ceph-monitoring

	Version of installed packages

	Git commit SHAs of Decapod itself

	Information about docker and containers

No ansible private keys or user passwords (they are hashed by Argon2 [https://github.com/p-h-c/phc-winner-argon2]) are stored in debug
snapshot.

Admin service

Along with ordinary Decapod docker containers, docker-compose runs
optional but strongly recommended service, called admin service.
The main intention of this service is to simplify life of Decapod
administrator providing special containers which acts like lightweight
VM with configured CLI interface and special
tool, decapod-admin for performing maintenance or low level
operations on Decapod or cluster.

To access this service, use following command:

$ docker-compose -p myprojectname exec admin bash

Note

As usual, -p means the name of the project. If you haven’t
specified it on running docker-compose, do not specify it here.

You will enter container. Default environment allows to run
decapod utility with configured URL and login/password pair
root/root.

root@7252bfd5947d:/# env | grep DECAPOD
DECAPOD_PASSWORD=root
DECAPOD_LOGIN=root
DECAPOD_URL=http://frontend:80

Also, this server has a bunch of additional utilities to simplify
administrator life: vim, nano, less, jq, yaql,
jmespath-terminal and jp. Vim is configured as default editor.

Basically, it means that you can execute decapod from such
container as is.

root@7252bfd5947d:/# decapod user get-all
[
 {
 "data": {
 "email": "noreply@example.com",
 "full_name": "Root User",
 "login": "root",
 "role_id": "e6ba587a-6256-401a-8734-8cead3d7a4c7"
 },
 "id": "7a52f762-7c2d-4164-b779-15f86f4aef2a",
 "initiator_id": null,
 "model": "user",
 "time_deleted": 0,
 "time_updated": 1487146111,
 "version": 1
 }
]
root@7252bfd5947d:/# decapod user get-all | jp '[0].id'
"7a52f762-7c2d-4164-b779-15f86f4aef2a"
root@7252bfd5947d:/# decapod user get-all | jq -r '.[0]|.id'
7a52f762-7c2d-4164-b779-15f86f4aef2a

Also, admin service runs cron jobs and it means, that keystone
synchronization, monitoring data
collection is performed there.

root@7252bfd5947d:/# crontab -l
PATH=/bin:/usr/bin:/usr/local/bin
LC_ALL=C.UTF-8
LANG=C.UTF-8

*/10 * * * * flock -xn /usr/local/bin/decapod-collect-data timeout --foreground -k 3m 2m /usr/local/bin/decapod-collect-data > /var/log/cron.log 2>&1
*/10 * * * * flock -xn /usr/local/bin/decapod-admin /usr/local/bin/decapod-admin keystone sync > /var/log/cron.log 2>&1

The most interesting part is decapod-admin utility which
allows to perform a various maintenence and admin routines.

	Migrations

	Generate cloud-init user-data config

	Database maintenence

	SSH to Ceph hosts

	Parallel SSH executions

	Restore deleted entities

	Unlock servers

	Password Reset

Also, admin service serves documentation you are reading so Decapod
has bundled documentation within container. To access documentation,
check DECAPOD_DOCS_PORT environment variable (default is
9998). So, if you access Decapod like http://10.0.0.10:9999,
docs will be served on http://10.0.0.10:9998.

See also

	jq [https://stedolan.github.io/jq/]

	yaql [https://yaql.readthedocs.io/en/latest/]

	jmespath-terminal [https://github.com/jmespath/jmespath.terminal]

	jp [https://github.com/jmespath/jp]

Migrations

Migration concept in Decapod is quite similar to migrations in databases
but it does not affect only schema but data also. The main idea of such
migration is to adapt existing data to newer version of Decapod.

Overview

root@7252bfd5947d:/# decapod-admin migration --help
Usage: decapod-admin migration [OPTIONS] COMMAND [ARGS]...

 Migrations for database.

Options:
 -h, --help Show this message and exit.

Commands:
 apply Apply migration script.
 list List migrations.
 show Show details on applied migration.

root@7252bfd5947d:/# decapod-admin migration apply --help
Usage: decapod-admin migration apply [OPTIONS] [MIGRATION_NAME]...

 Apply migration script.

 If no parameters are given, then run all not applied migration scripts if
 correct order.

Options:
 -r, --reapply Reapply migrations even if them were applied.
 -f, --fake Do not actual run migration, just mark it as applied.
 -h, --help Show this message and exit.

root@7252bfd5947d:/# decapod-admin migration list --help
Usage: decapod-admin migration list [OPTIONS] [QUERY]

 List migrations.

 Available query filters are:

 - all (default) - list all migrations;
 - applied - list only applied migrations;
 - not-applied - list only not applied migrations.

Options:
 -h, --help Show this message and exit.

root@7252bfd5947d:/# decapod-admin migration show --help
Usage: decapod-admin migration show [OPTIONS] MIGRATION_NAME

 Show details on applied migration.

Options:
 -h, --help Show this message and exit.

To get a list of migrations, do following:

root@7252bfd5947d:/# decapod-admin migration list all
[applied] 0000_index_models.py
[applied] 0001_insert_default_role.py
[applied] 0002_insert_default_user.py
[applied] 0003_native_ttl_index.py
[applied] 0004_migrate_to_native_ttls.py
[applied] 0005_index_cluster_data.py
[applied] 0006_create_cluster_data.py
[applied] 0007_add_external_id_to_user.py

To apply migrations:

root@7252bfd5947d:/# decapod-admin migration apply
2017-02-15 10:19:25 [DEBUG] (lock.py:118): Lock applying_migrations was acquire by locker 071df271-d0ba-4fdc-83d0-49575d0acf3c
2017-02-15 10:19:25 [DEBUG] (lock.py:183): Prolong thread for locker applying_migrations of lock 071df271-d0ba-4fdc-83d0-49575d0acf3c has been started. Thread MongoLock prolonger 071df271-d0ba-4fdc-83d0-49575d0acf3c for applying_migrations, ident 140625762334464
2017-02-15 10:19:25 [INFO] (migration.py:119): No migration are required to be applied.
2017-02-15 10:19:25 [DEBUG] (lock.py:202): Prolong thread for locker applying_migrations of lock 071df271-d0ba-4fdc-83d0-49575d0acf3c has been stopped. Thread MongoLock prolonger 071df271-d0ba-4fdc-83d0-49575d0acf3c for applying_migrations, ident 140625762334464
2017-02-15 10:19:25 [DEBUG] (lock.py:124): Try to release lock applying_migrations by locker 071df271-d0ba-4fdc-83d0-49575d0acf3c.
2017-02-15 10:19:25 [DEBUG] (lock.py:140): Lock applying_migrations was released by locker 071df271-d0ba-4fdc-83d0-49575d0acf3c.

Migrations can be applied at any moment: Decapod tracks migrations which
were already applied.

To show details on migration:

root@7252bfd5947d:/# decapod-admin migration show 0006_create_cluster_data.py
Name: 0006_create_cluster_data.py
Result: ok
Executed at: Wed Feb 15 08:08:36 2017
SHA1 of script: 73eb7adeb1b4d82dd8f9bdb5aadddccbcef4a8b3

-- Stdout:
Migrate 0 clusters.

-- Stderr:

Generate cloud-init user-data config

You can generate user-data config for cloud-init with decapod
as described in Generate user data chapter, but since
decapod-admin knows about Decapod installation much more
than decapod is expected to know, you can use it to generate
correct config.

Overview

root@7252bfd5947d:/# decapod-admin cloud-config --help
Usage: decapod-admin cloud-config [OPTIONS] PUBLIC_URL

 Generate cloud-init user-data config for current installation.

Options:
 -u, --username TEXT Username which should be used by Ansible [default:
 ansible]
 -n, --no-discovery Generate config with user and packages but no
 discovery files.
 -t, --timeout INTEGER Timeout for remote requests. [default: 20]
 -h, --help Show this message and exit.

So, you need to set only URL accessible by Ceph nodes.

root@7252bfd5947d:/# decapod-admin cloud-config http://10.0.0.10:9999
#cloud-config
packages: [python]
runcmd:
- [echo, === START DECAPOD SERVER DISCOVERY ===]
- [sh, -xc, 'grep -q ''/usr/share/server_discovery.sh'' /etc/rc.local || sed -i ''s?^exit 0?/usr/share/server_discovery.sh >> /var/log/server_discovery.log 2>\&1\nexit 0?'' /etc/rc.local']
- [sh, -xc, systemctl enable rc-local.service || true]
- [sh, -xc, /usr/share/server_discovery.sh 2>&1 | tee -a /var/log/server_discovery.log]
- [echo, === FINISH DECAPOD SERVER DISCOVERY ===]
users:
- groups: [sudo]
 name: ansible
 shell: /bin/bash
 ssh-authorized-keys: [ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQC7K9bHPrSu5VHnUOis2Uwc822fMyPTtwjfOkzNi/oVOxmd1QE3DilrO5fJ33pRwEj7r1DfTlJmZWs8XwWaaUXkQ+iyfRPtgt/Ox+X5A/XaLdi/yz7UjnHc8ERDUT/z73RzDwf21KNQOopGRuyhe+gvGZ5mhYDz3bnnYY9IRBNYaGw4bjS0q1AbkPa1PvCo7P5b5UuRjhi4H74zCFkQD4evQsrQOcgev5GimnODqMntU0jnI/eEJwnnd1TcYG7dS6FqMWpFX1gqcKjFIuqNTZLYzJu9U8mxxKmGOQSI6KWfP0etBw1YRHRIfdZmdaqSKHh0ZhUUHjbf8Hb5Vqv1Fkzf0cGPbfrazEDI5FaVjkZMGFfdgs1be6xO7NHqzu1JJ3ZEur28o0AQyOVvrEJIxQayDM0qyKi7B4+j6QDL0CDaWN3dUZO45il/KOm/eXCm4yQg0ImXHUmsDoW+6W6akI/fSCAn8r9GK2QBBJPeTPA95WlOSXtICnrsqgb74yKPEsslzfrTUIiyoXBuuR9o5OoPXghKrazqcTeK/Vdl7w4nZ00O4jllHMTrS1xyubN0QeBd+3D8Hy2bN5h7WjiJsZ2XhlKR0Z1i5AbgCR9hfQl84aFIXRARz+6uuDDHe2ONXujcS9jhuN7SOLGckiaXNfAeAsbEkYZytnUgdoxbHYSfzw==]
 sudo: ['ALL=(ALL) NOPASSWD:ALL']
write_files:
- content: |
 #-*- coding: utf-8 -*-

 from __future__ import print_function

 import json
 import ssl
 import sys

 try:
 import urllib.request as urllib2
 except ImportError:
 import urllib2

 data = {
 "username": 'ansible',
 "host": sys.argv[1].lower().strip(),
 "id": sys.argv[2].lower().strip()
 }
 headers = {
 "Content-Type": "application/json",
 "Authorization": '26758c32-3421-4f3d-9603-e4b5337e7ecc',
 "User-Agent": "cloud-init server discovery"
 }

 def get_response(url, data=None):
 if data is not None:
 data = json.dumps(data).encode("utf-8")
 request = urllib2.Request(url, data=data, headers=headers)
 request_kwargs = {"timeout": 20}
 if sys.version_info >= (2, 7, 9):
 ctx = ssl.create_default_context()
 ctx.check_hostname = False
 ctx.verify_mode = ssl.CERT_NONE
 request_kwargs["context"] = ctx
 try:
 return urllib2.urlopen(request, **request_kwargs).read()
 except Exception as exc:
 print("Cannot request {0}: {1}".format(url, exc))

 metadata_ip = get_response('http://169.254.169.254/latest/meta-data/public-ipv4')
 if metadata_ip is not None:
 data["host"] = metadata_ip
 print("Use IP {0} discovered from metadata API".format(metadata_ip))

 response = get_response('http://10.0.0.10:9999', data)
 if response is None:
 sys.exit("Server discovery failed.")
 print("Server discovery completed.")
 path: /usr/share/server_discovery.py
 permissions: '0440'
- content: |
 #!/bin/bash
 set -xe -o pipefail

 echo "Date $(date) | $(date -u) | $(date '+%s')"

 main() {
 local ip="$(get_local_ip)"
 local hostid="$(get_local_hostid)"

 python /usr/share/server_discovery.py "$ip" "$hostid"
 }

 get_local_ip() {
 local remote_ipaddr="$(getent ahostsv4 "10.0.0.10" | head -n 1 | cut -f 1 -d ' ')"

 ip route get "$remote_ipaddr" | head -n 1 | rev | cut -d ' ' -f 2 | rev
 }

 get_local_hostid() {
 dmidecode | grep UUID | rev | cut -d ' ' -f 1 | rev
 }

 main
 path: /usr/share/server_discovery.sh
 permissions: '0550'

Database maintenence

decapod-admin performs backup and restore of MongoDB, main
storage system used by Decapod. Archive format, created by this tool is
native MongoDB archive, compressed by default.

Overview

root@7252bfd5947d:/# decapod-admin -h
Usage: decapod-admin [OPTIONS] COMMAND [ARGS]...

 Decapod Admin commandline tool.

 With this CLI admin/operator can perform low-level maintenence of Decapod.
 This tool is not intended to be used by anyone but administrators. End-
 users should not use it at all.

Options:
 -d, --debug Run in debug mode.
 --version Show the version and exit.
 -h, --help Show this message and exit.

Commands:
 ceph-version Commands related to fetching of Ceph version.
 cloud-config Generate cloud-init user-data config for...
 db Database commands.
 keystone Keystone related commands.
 locked-servers Commands to manage locked servers.
 migration Migrations for database.
 pdsh PDSH for decapod-admin.
 restore Restores entity.
 ssh Connect to remote machine by SSH.

root@7252bfd5947d:/# decapod-admin db --help
Usage: decapod-admin db [OPTIONS] COMMAND [ARGS]...

 Database commands.

Options:
 -h, --help Show this message and exit.

Commands:
 backup Backup database.
 restore Restores database.

root@7252bfd5947d:/# decapod-admin db backup --help
Usage: decapod-admin db backup [OPTIONS]

 Backup database.

 This backup will use native MongoDB stream archive format already gzipped
 so please redirect to required file.

Options:
 -r, --no-compress Do not gzip archive format.
 -h, --help Show this message and exit.

root@7252bfd5947d:/# decapod-admin db restore --help
Usage: decapod-admin db restore [OPTIONS]

 Restores database.

 Backup is native MongoDB stream archive format, created by mongodump
 --archive or 'backup' subcommand

Options:
 -r, --no-compress Do not gzip archive format.
 -h, --help Show this message and exit.

Result of execution decapod-admin db backup is identical to
output of mongodump --archive --gzip. Result of execution of
decapod-admin db restore is identical to mongorestore --archive
--gzip. decapod-admin uses /etc/decapod/config.yaml for
reading Decapod’s MongoDB settings and correctly constructs commandline
respecting SSL settings.

To perform backup, do following

$ decapod-admin db backup > backupfile

And to restore:

$ decapod-admin db restore < backupfile

If you do not want to compress, use -r flag. It literally
means, that mongodump and mongorestore won’t use
--gzip flag.

See also

	Archiving and Compression in MongoDB Tools [https://www.mongodb.com/blog/post/archiving-and-compression-in-mongodb-tools]

SSH to Ceph hosts

It is possible to SSH on remote host with the same user as used by
Ansible using decapod-admin only.

Overview

root@7252bfd5947d:/# decapod-admin ssh --help
Usage: decapod-admin ssh [OPTIONS] COMMAND [ARGS]...

 Connect to remote machine by SSH.

Options:
 -o, --ssh-args STRING SSH arguments to pass to OpenSSH client (in a
 form of '-o Compression=yes -o
 CompressionLevel=9', single option)
 -i, --identity-file FILENAME Path to the private key file. [default:
 /root/.ssh/id_rsa]
 -h, --help Show this message and exit.

Commands:
 server-id Connect to remote machine by IP address.
 server-ip Connect to remote machine by IP address.

root@7252bfd5947d:/# decapod-admin ssh server-id --help
Usage: decapod-admin ssh server-id [OPTIONS] SERVER_ID

 Connect to remote machine by IP address.

Options:
 -h, --help Show this message and exit.

root@7252bfd5947d:/# decapod-admin ssh server-ip --help
Usage: decapod-admin ssh server-ip [OPTIONS] IP_ADDRESS

 Connect to remote machine by IP address.

Options:
 -h, --help Show this message and exit.

So if you know server-id or IP, you can execute interactive SSH session with it. For example, if I want to connect to server 8cf8af12-89a0-477d-85e7-ce6cbe5f8a07:

root@7252bfd5947d:/# decapod-admin ssh server-id 8cf8af12-89a0-477d-85e7-ce6cbe5f8a07
2017-02-15 09:42:40 [DEBUG] (ssh.py:111): Execute ['/usr/bin/ssh', '-4', '-tt', '-x', '-o', 'UserKnownHostsFile=/dev/null', '-o', 'StrictHostKeyChecking=no', '-l', 'ansible', '-i', '/root/.ssh/id_rsa', '10.0.0.23']
Warning: Permanently added '10.0.0.23' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-22-generic x86_64)

 * Documentation: https://help.ubuntu.com/

171 packages can be updated.
73 updates are security updates.

Last login: Wed Feb 15 09:30:45 2017 from 10.0.0.10
ansible@ceph-node04:~$ whoami
ansible

Parallel SSH executions

Sometimes it is required to execute some commands on remote hosts in
parallel. As a rule, pdsh [https://linux.die.net/man/1/pdsh] is
used for that purposes but decapod-admin provides its own
implementation, integrated with Decapod.

Using this implementation, you can execute command on multiple hosts in
parallel, upload files and download them from remote hosts. Please check
help messages from the tool to get details.

Overview

root@7252bfd5947d:/# decapod-admin pdsh --help
Usage: decapod-admin pdsh [OPTIONS] COMMAND [ARGS]...

 PDSH for decapod-admin.

 pdsh allows user to execute commands on host batches in parallel using SSH
 connection.

 Please be noticed that -w flag is priority one, all other filters just
 won't work at all.

 If filter is not set, then it means, that all items in the scope will be
 processed (if no role is set, then all roles will be processed etc.)

Options:
 -b, --batch-size INTEGER By default, command won't connect to all
 servers simultaneously, it is trying to
 process servers in batches. Negative number or
 0 means connect to all hosts [default: 20]
 -i, --identity-file FILENAME Path to the private key file [default:
 /root/.ssh/id_rsa]
 -w, --server-id TEXT Servers IDs to connect to. You can set this
 option multiple times.
 -r, --role-name TEXT Role name in cluster. You can set this option
 multiple times. This option works only if you
 set cluster-id.
 -c, --cluster-id TEXT Cluster ID to process. You can set this option
 multiple times.
 -h, --help Show this message and exit.

Commands:
 download Download files from remote host.
 exec Execute command on remote machines.
 upload Upload files to remote host.

root@7252bfd5947d:/# decapod-admin pdsh download --help
Usage: decapod-admin pdsh download [OPTIONS] REMOTE_PATH... LOCAL_PATH

 Download files from remote host.

 When downloading a single file or directory, the local path can be either
 the full path to download data into or the path to an existing directory
 where the data should be placed. In the latter case, the base file name
 from the remote path will be used as the local name.

 Local path must refer to an existing directory.

 If --flat is not set, then directories with server ID and server IP will
 be created (server ID directory will be symlink to server IP).

Options:
 --no-follow-symlinks Do not process symbolic links
 --no-recursive The remote path points at a directory, the entire
 subtree under that directory is not processed
 --no-preserve The access and modification times and permissions of
 the original file are not set on the processed file.
 --flat Do not create directory with server ID and IP on
 download
 --glob-pattern Consider remote paths as globs.
 -h, --help Show this message and exit.

root@7252bfd5947d:/# decapod-admin pdsh exec --help
Usage: decapod-admin pdsh exec [OPTIONS] COMMAND...

 Execute command on remote machines.

Options:
 -s, --sudo Run command as sudo user.
 -h, --help Show this message and exit.

root@7252bfd5947d:/# decapod-admin pdsh upload --help
Usage: decapod-admin pdsh upload [OPTIONS] LOCAL_PATH... REMOTE_PATH

 Upload files to remote host.

 When uploading a single file or directory, the remote path can be either
 the full path to upload data into or the path to an existing directory
 where the data should be placed. In the latter case, the base file name
 from the local path will be used as the remote name.

 When uploading multiple files, the remote path must refer to an existing
 directory.

 Local path could be glob.

Options:
 --no-follow-symlinks Do not process symbolic links
 --no-recursive The remote path points at a directory, the entire
 subtree under that directory is not processed
 --no-preserve The access and modification times and permissions of
 the original file are not set on the processed file.
 -y, --yes Do not ask about confirmation.
 -h, --help Show this message and exit.

Example

root@7252bfd5947d:/# decapod-admin pdsh exec -- ls -la
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : total 32
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : drwxr-xr-x 5 ansible ansible 4096 Feb 15 09:22 .
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : drwxr-xr-x 4 root root 4096 Feb 15 08:48 ..
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : drwx------ 3 ansible ansible 4096 Feb 15 09:22 .ansible
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : -rw-r--r-- 1 ansible ansible 220 Aug 31 2015 .bash_logout
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : -rw-r--r-- 1 ansible ansible 3771 Aug 31 2015 .bashrc
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : drwx------ 2 ansible ansible 4096 Feb 15 09:22 .cache
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : -rw-r--r-- 1 ansible ansible 675 Aug 31 2015 .profile
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : drwx------ 2 ansible ansible 4096 Feb 15 08:49 .ssh
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : -rw-r--r-- 1 ansible ansible 0 Feb 15 09:22 .sudo_as_admin_successful
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : total 32
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : drwxr-xr-x 5 ansible ansible 4096 Feb 15 10:40 .
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : drwxr-xr-x 4 root root 4096 Feb 15 08:48 ..
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : drwx------ 3 ansible ansible 4096 Feb 15 09:22 .ansible
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : -rw-r--r-- 1 ansible ansible 220 Aug 31 2015 .bash_logout
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : -rw-r--r-- 1 ansible ansible 3771 Aug 31 2015 .bashrc
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : drwx------ 2 ansible ansible 4096 Feb 15 09:22 .cache
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : -rw-r--r-- 1 ansible ansible 675 Aug 31 2015 .profile
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : drwx------ 2 ansible ansible 4096 Feb 15 08:49 .ssh
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : -rw-r--r-- 1 ansible ansible 0 Feb 15 09:22 .sudo_as_admin_successful
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : total 36
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : drwxr-xr-x 5 ansible ansible 4096 Feb 15 10:00 .
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : drwxr-xr-x 4 root root 4096 Feb 15 08:48 ..
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : drwx------ 3 ansible ansible 4096 Feb 15 09:22 .ansible
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : -rw------- 1 ansible ansible 7 Feb 15 09:43 .bash_history
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : -rw-r--r-- 1 ansible ansible 220 Aug 31 2015 .bash_logout
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : -rw-r--r-- 1 ansible ansible 3771 Aug 31 2015 .bashrc
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : drwx------ 2 ansible ansible 4096 Feb 15 09:22 .cache
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : -rw-r--r-- 1 ansible ansible 675 Aug 31 2015 .profile
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : drwx------ 2 ansible ansible 4096 Feb 15 08:49 .ssh
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : -rw-r--r-- 1 ansible ansible 0 Feb 15 09:22 .sudo_as_admin_successful
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : total 32
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : drwxr-xr-x 5 ansible ansible 4096 Feb 15 10:30 .
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : drwxr-xr-x 4 root root 4096 Feb 15 08:48 ..
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : drwx------ 3 ansible ansible 4096 Feb 15 09:22 .ansible
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : -rw-r--r-- 1 ansible ansible 220 Aug 31 2015 .bash_logout
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : -rw-r--r-- 1 ansible ansible 3771 Aug 31 2015 .bashrc
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : drwx------ 2 ansible ansible 4096 Feb 15 09:22 .cache
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : -rw-r--r-- 1 ansible ansible 675 Aug 31 2015 .profile
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : drwx------ 2 ansible ansible 4096 Feb 15 08:49 .ssh
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : -rw-r--r-- 1 ansible ansible 0 Feb 15 09:22 .sudo_as_admin_successful

root@7252bfd5947d:/# decapod-admin pdsh upload /etc/decapod/config.yaml .
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : Start to upload /etc/decapod/config.yaml to .
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : Finished uploading of /etc/decapod/config.yaml to .
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : Start to upload /etc/decapod/config.yaml to .
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : Start to upload /etc/decapod/config.yaml to .
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : Finished uploading of /etc/decapod/config.yaml to .
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : Finished uploading of /etc/decapod/config.yaml to .
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : Start to upload /etc/decapod/config.yaml to .
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : Finished uploading of /etc/decapod/config.yaml to .

root@7252bfd5947d:/# decapod-admin pdsh exec -- ls -lah config.yaml
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : -rw-r--r-- 1 ansible ansible 3.0K Feb 15 07:37 config.yaml
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : -rw-r--r-- 1 ansible ansible 3.0K Feb 15 07:37 config.yaml
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : -rw-r--r-- 1 ansible ansible 3.0K Feb 15 07:37 config.yaml
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : -rw-r--r-- 1 ansible ansible 3.0K Feb 15 07:37 config.yaml

root@7252bfd5947d:/# decapod-admin pdsh download config.yaml results/
9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5 | 10.0.0.21 : Start to download config.yaml to results/9f01297e-e6fb-4d9f-ae96-09d4fcb8e1f5
26261da0-2dde-41e9-8ab6-8836c806623e | 10.0.0.20 : Start to download config.yaml to results/26261da0-2dde-41e9-8ab6-8836c806623e
8cf8af12-89a0-477d-85e7-ce6cbe5f8a07 | 10.0.0.23 : Start to download config.yaml to results/8cf8af12-89a0-477d-85e7-ce6cbe5f8a07
62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93 | 10.0.0.22 : Start to download config.yaml to results/62adf9cb-3f2d-4ea6-94f5-bca3aebfdb93

Restore deleted entities

Sometimes admin requires to restore some items which were
deleted explicitly or accidentaly. To do so, you can use
decapod-admin.

Overview

root@7252bfd5947d:/# decapod-admin restore -h
Usage: decapod-admin restore [OPTIONS] ITEM_TYPE ITEM_ID

 Restores entity.

 User selects type of entity (e.g cluster or server) and its ID, this
 command 'undeletes' it in database.

 Valid item types are:

 - cluster
 - execution
 - playbook-configuration
 - role
 - user
 - server

Options:
 -y, --yes Do not ask about confirmation.
 -h, --help Show this message and exit.

For example, you want to restore user with ID
6805075b-e40d-4800-8520-8569dd7327bd.

root@7252bfd5947d:/# decapod-admin restore user 6805075b-e40d-4800-8520-8569dd7327bd
{
 "data": {
 "email": "test@example.com",
 "full_name": "Full",
 "login": "test",
 "role_id": null
 },
 "id": "6805075b-e40d-4800-8520-8569dd7327bd",
 "initiator_id": "7a52f762-7c2d-4164-b779-15f86f4aef2a",
 "model": "user",
 "time_deleted": 1487154755,
 "time_updated": 1487154755,
 "version": 2
}
Undelete item? [y/N]: y
{
 "data": {
 "email": "test@example.com",
 "full_name": "Full",
 "login": "test",
 "role_id": null
 },
 "id": "6805075b-e40d-4800-8520-8569dd7327bd",
 "initiator_id": "7a52f762-7c2d-4164-b779-15f86f4aef2a",
 "model": "user",
 "time_deleted": 0,
 "time_updated": 1487154769,
 "version": 3
}

Unlock servers

All playbook executions lock servers they use. This is done to eliminate
situation when concurrent execution will cause unexpected problems.
But sometimes bugs happen and you need to unlock servers manually. Of
course, you have to be really cautious on that but as a last resort, you
can break lock with decapod-admin.

Overview

root@7252bfd5947d:/# decapod-admin locked-servers get-all -h
Usage: decapod-admin locked-servers get-all [OPTIONS]

 List locked servers

Options:
 -f, --output-format [json|csv] Format of the output [default: json]
 -h, --help Show this message and exit.
root@7252bfd5947d:/# decapod-admin locked-servers --help
Usage: decapod-admin locked-servers [OPTIONS] COMMAND [ARGS]...

 Commands to manage locked servers.

Options:
 -h, --help Show this message and exit.

Commands:
 get-all List locked servers
 unlock Unlock servers.

root@7252bfd5947d:/# decapod-admin locked-servers get-all --help
Usage: decapod-admin locked-servers get-all [OPTIONS]

 List locked servers

Options:
 -f, --output-format [json|csv] Format of the output [default: json]
 -h, --help Show this message and exit.

root@7252bfd5947d:/# decapod-admin locked-servers unlock --help
Usage: decapod-admin locked-servers unlock [OPTIONS] SERVER_ID...

 Unlock servers.

Options:
 -h, --help Show this message and exit.

Password Reset

Sometimes it is required to reset a password for a user. Of course,
there is well defined procedure of user password resetting but sometimes
you just have to change the password bypassing official procedure (e.g
user has obsolete, not working email).

Or if you want to change default login/password pair from
root/root to something more secure.

Overview

$ decapod-admin password-reset -h
Usage: decapod-admin password-reset [OPTIONS] USER_ID

 Explicitly reset user password.

 Despite the fact that user can request password reset by himself,
 sometimes it is necessary to reset password manually, explicitly and get
 new one immediately.

 Or you may want to change password for user without working email (e.g
 default root user).

Options:
 -p, -password TEXT New password to use. Empty value means generate password
 and print after.
 -h, --help Show this message and exit.

If you do not pass new password in commandline, decapod-admin
will bring a prompt and asks you to enter new password.

$ decapod-admin password-reset c83d0ede-aad1-4f1f-b6f0-730879974763
New password []:
Repeat for confirmation:

If you do not pass any password, tool will generate one for you and
output on the stdout.

$ decapod-admin password-reset c83d0ede-aad1-4f1f-b6f0-730879974763
New password []:
54\gE'1Ck_

Decapod API

This document covers Decapod API internals.

Contents

	API models
	Basic model

	User

	Role

	Cluster

	Server

	Playbook Configuration

	Execution

	Execution Step

	Token

	Usage example
	Installation

	Initialize client

	Create new user

	Create new role

	Assign user with role

	Delete user

	Deploy Ceph cluster

	decapodlib API
	Usage example

	API

API models

Decapod API is classical RESTful JSON API, but it operates with models.
By term “models” it is meant JSON structured data in some generic way.
Each entity for end user is present is some generic way.

This chapter tries to cover models in details, describing meaning of
each field in each model. If you check Usage example or decapodlib API
chapters, you will see some references to data field, version
etc. Also, you will see, that updating of models require whole model.
This chapter is intended to explain how to update models and why whole
model is required.

Basic model

Basically, simple model looks like this:

{
 "data": {
 "somefield": "somevalue",
 },
 "id": "ee3944e8-758e-45dc-8e9e-e220478e442c",
 "initiator_id": null,
 "model": "something",
 "time_deleted": 0,
 "time_updated": 1479295535,
 "version": 1
}

As you can see, model has 2 parts: data field and envelope.
Envelope is a set of fields which are common for every model and
guaranteed to be there. data field is the model specific set of data
and can be arbitrary. The only guarantee here is that field is mapping
one (i.e data field cannot be list or null).

Basic Model JSON Schema definitions

There are some JSON Schema definitions that mentioned here to avoid
duplication.

{
 "non_empty_string": {
 "type": "string",
 "minLength": 1,
 "maxLength": 1024
 },
 "email": {
 "allOf": [
 {"type": "string", "format": "email"},
 {
 "type": "string",
 "pattern": "^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$"
 }
]
 },
 "positive_integer": {
 "type": "number",
 "multipleOf": 1.0,
 "minimum": 0
 },
 "uuid4_array": {
 "type": "array",
 "items": {"$ref": "#/definitions/uuid4"}
 },
 "uuid4": {
 "type": "string",
 "pattern": "^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}$"
 },
 "dmidecode_uuid": {
 "type": "string",
 "pattern": "^[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}$"
 },
 "dmidecode_uuid_array": {
 "type": "array",
 "items": {"$ref": "#/definitions/dmidecode_uuid"}
 },
 "hostname": {
 "type": "string",
 "format": "hostname"
 },
 "ip": {
 "oneOf": [
 {"type": "string", "format": "ipv4"},
 {"type": "string", "format": "ipv6"}
]
 }
}

Basic Model JSON Schema

{
 "type": "object",
 "properties": {
 "id": {"$ref": "#/definitions/uuid4"},
 "model": {"$ref": "#/definitions/non_empty_string"},
 "time_updated": {"$ref": "#/definitions/positive_integer"},
 "time_deleted": {"$ref": "#/definitions/positive_integer"},
 "version": {"$ref": "#/definitions/positive_integer"},
 "initiator_id": {
 "anyOf": [
 {"type": "null"},
 {"$ref": "#/definitions/uuid4"}
]
 },
 "data": {"type": "object"}
 },
 "additionalProperties": false,
 "required": [
 "id",
 "model",
 "time_updated",
 "time_deleted",
 "version",
 "initiator_id",
 "data"
]
}

All model description below contains JSON Schema only for data
field.

Field description

	Field
	Description

	id
	Unique identifier of the model. Most identifiers are simply UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]).

	initiator_id
	ID of the user who initiated creation of that version.

	model
	Name of the model.

	time_deleted
	UNIX timestamp when model was deleted. If model is not deleted, then this field is 0.

	time_updated
	UNIX timestamp when this model was modified last time.

	version
	Version of the model. Numbering starts from 1.

A few things to know about data model in Decapod:

	Nothing is deleted. Nothing is overwritten. You can always get whole
history of changes for every model.

	Decapod uses numbered versioning for a model. You may consider each
version as value of the value [https://www.youtube.com/watch?v=-6BsiVyC1kM].

	If you update any field for a model, update does not occur inplace.
Instead, new version is created. You can always access previous versions
later to verify changes made in new version.

	Deletion is not actual removing from database. Instead, new version
is created. The only difference is in time_deleted field. If
model was deleted, then time_deleted is UNIX timestamp
of the moment when such event was occured. It is better to
consider Decapod deletion as a mix of archivation and sealing.

	Any active model (not deleted) has time_deleted == 0.

	If model was deleted, any further progression is forbidden.

	Deleted model is excluded from listings by default but it is always
possible to access it with parametrized listing or direct request.

User

User model presents a data about Decapod user. This model never displays
password of the user.

JSON Schema

{
 "login": {"$ref": "#/definitions/non_empty_string"},
 "email": {"$ref": "#/definitions/email"},
 "full_name": {"$ref": "#/definitions/non_empty_string"},
 "role_id": {
 "oneOf": [
 {"$ref": "#/definitions/uuid4"},
 {"type": "null"}
]
 }
}

Real-world Example

{
 "data": {
 "email": "noreply@example.com",
 "full_name": "Root User",
 "login": "root",
 "role_id": "4f96f3b0-85e5-4735-8c97-34fbef157c9d"
 },
 "id": "ee3944e8-758e-45dc-8e9e-e220478e442c",
 "initiator_id": null,
 "model": "user",
 "time_deleted": 0,
 "time_updated": 1479295535,
 "version": 1
}

Field description

	Field
	Description

	email
	Email of the user. This has to be real email, because user will get some important notifications like password reset here.

	full_name
	Full name of the user.

	login
	Username in Decapod

	role_id
	ID of role assigned to user. Can be null if no role is assigned.

Role

Role presents a set of permissions. Each API action require permissions,
sometimes API may require conditional permissions: for example, playbook
execution require permission on every playbook type.

JSON Schema

{
 "name": {"$ref": "#/definitions/non_empty_string"},
 "permissions": {
 "type": "array",
 "items": {
 "type": "object",
 "required": ["name", "permissions"],
 "additionalProperties": false,
 "properties": {
 "name": {"$ref": "#/definitions/non_empty_string"},
 "permissions": {
 "type": "array",
 "items": {"$ref": "#/definitions/non_empty_string"}
 }
 }
 }
 }
}

Real-world Example

{
 "data": {
 "name": "wheel",
 "permissions": [
 {
 "name": "playbook",
 "permissions": [
 "add_osd",
 "cluster_deploy",
 "hello_world",
 "purge_cluster",
 "remove_osd"
]
 },
 {
 "name": "api",
 "permissions": [
 "create_cluster",
 "create_execution",
 "create_playbook_configuration",
 "create_role",
 "create_server",
 "create_user",
 "delete_cluster",
 "delete_execution",
 "delete_playbook_confuiguration",
 "delete_role",
 "delete_server",
 "delete_user",
 "edit_cluster",
 "edit_playbook_configuration",
 "edit_role",
 "edit_server",
 "edit_user",
 "view_cluster",
 "view_cluster_versions",
 "view_execution",
 "view_execution_steps",
 "view_execution_version",
 "view_playbook_configuration",
 "view_playbook_configuration_version",
 "view_role",
 "view_role_versions",
 "view_server",
 "view_server_versions",
 "view_user",
 "view_user_versions"
]
 }
]
 },
 "id": "4f96f3b0-85e5-4735-8c97-34fbef157c9d",
 "initiator_id": null,
 "model": "role",
 "time_deleted": 0,
 "time_updated": 1479295534,
 "version": 1
}

Field description

	Field
	Description

	name
	Name of the role.

	permissions
	A list of permissions for the role. Each permission refer some subset of interest: api permission is responsible for access to endpoints, playbook is responsible for playbook which this role allows to execute.

Cluster

Cluster model has all data, related to the cluster. Also, it provides
credentials to access or configure apps to use with this Ceph cluster.

JSON Schema

{
 "name": {"$ref": "#/definitions/non_empty_string"},
 "configuration": {
 "type": "object",
 "additionalProperties": {
 "type": "array",
 "items": {
 "type": "object",
 "required": ["server_id", "version"],
 "properties": {
 "server_id": {"$ref": "#/definitions/dmidecode_uuid"},
 "version": {"$ref": "#/definitions/positive_integer"}
 }
 }
 }
 }
}

Real-world Example

{
 "data": {
 "configuration": {
 "mons": [
 {
 "server_id": "3ee25709-215d-4f51-8348-20b4e7390fdb",
 "version": 2
 }
],
 "osds": [
 {
 "server_id": "045cdedf-898d-450d-8b3e-10a1bd20ece1",
 "version": 2
 },
 {
 "server_id": "0f26c53a-4ce6-4fdd-9e4b-ed7400abf8eb",
 "version": 2
 },
 {
 "server_id": "6cafad99-6353-448c-afbc-f161d0664522",
 "version": 2
 },
 {
 "server_id": "73079fc7-58a8-40b0-ba03-f02d7a4f2817",
 "version": 2
 }
],
 "restapis": [
 {
 "server_id": "3ee25709-215d-4f51-8348-20b4e7390fdb",
 "version": 2
 }
]
 },
 "name": "ceph"
 },
 "id": "1597a71f-6619-4db6-9cda-a153f4f19097",
 "initiator_id": "9d010f3f-2ec0-4079-ae8c-f46415e2530c",
 "model": "cluster",
 "time_deleted": 0,
 "time_updated": 1478175677,
 "version": 3
}

Field description

	Field
	Description

	name
	Name of the cluster. This name will be propagated to Ceph by default (but always possible to redefine in playbook configuration).

	configuration
	Configuration of the cluster. In most cases this is a mapping of node role name (mon, osd etc) to the list of servers which have that role.

Server

Server model presents all information about Ceph node.

JSON Schema

{
 "name": {"$ref": "#/definitions/non_empty_string"},
 "fqdn": {"$ref": "#/definitions/hostname"},
 "ip": {"$ref": "#/definitions/ip"},
 "state": {
 "type": "string",
 "enum": {"$ref": "#/definitions/non_empty_string"}
 },
 "cluster_id": {"$ref": "#/definitions/uuid4"},
 "facts": {"type": "object"}
}

Real-world Example

{
 "data": {
 "cluster_id": "1597a71f-6619-4db6-9cda-a153f4f19097",
 "facts": {
 "ansible_all_ipv4_addresses": [
 "10.10.0.7"
],
 "ansible_all_ipv6_addresses": [
 "fe80::5054:ff:fe36:85df"
],
 "ansible_architecture": "x86_64",
 "ansible_bios_date": "04/01/2014",
 "ansible_bios_version": "Ubuntu-1.8.2-1ubuntu2",
 "ansible_cmdline": {
 "BOOT_IMAGE": "/boot/vmlinuz-4.4.0-45-generic",
 "ro": true,
 "root": "UUID=411bdb0c-80be-4a23-9876-9ce59f8f1f6a"
 },
 "ansible_date_time": {
 "date": "2016-11-03",
 "day": "03",
 "epoch": "1478174060",
 "hour": "11",
 "iso8601": "2016-11-03T11:54:20Z",
 "iso8601_basic": "20161103T115420460649",
 "iso8601_basic_short": "20161103T115420",
 "iso8601_micro": "2016-11-03T11:54:20.460724Z",
 "minute": "54",
 "month": "11",
 "second": "20",
 "time": "11:54:20",
 "tz": "UTC",
 "tz_offset": "+0000",
 "weekday": "Thursday",
 "weekday_number": "4",
 "weeknumber": "44",
 "year": "2016"
 },
 "ansible_default_ipv4": {
 "address": "10.10.0.7",
 "alias": "ens3",
 "broadcast": "10.10.0.255",
 "gateway": "10.10.0.1",
 "interface": "ens3",
 "macaddress": "52:54:00:36:85:df",
 "mtu": 1500,
 "netmask": "255.255.255.0",
 "network": "10.10.0.0",
 "type": "ether"
 },
 "ansible_default_ipv6": {},
 "ansible_devices": {
 "vda": {
 "holders": [],
 "host": "SCSI storage controller: Red Hat, Inc Virtio block device",
 "model": null,
 "partitions": {
 "vda1": {
 "sectors": "31455199",
 "sectorsize": 512,
 "size": "15.00 GB",
 "start": "2048"
 }
 },
 "removable": "0",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "",
 "sectors": "31457280",
 "sectorsize": "512",
 "size": "15.00 GB",
 "support_discard": "0",
 "vendor": "0x1af4"
 },
 "vdb": {
 "holders": [],
 "host": "SCSI storage controller: Red Hat, Inc Virtio block device",
 "model": null,
 "partitions": {},
 "removable": "0",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "",
 "sectors": "41943040",
 "sectorsize": "512",
 "size": "20.00 GB",
 "support_discard": "0",
 "vendor": "0x1af4"
 },
 "vdc": {
 "holders": [],
 "host": "SCSI storage controller: Red Hat, Inc Virtio block device",
 "model": null,
 "partitions": {},
 "removable": "0",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "",
 "sectors": "41943040",
 "sectorsize": "512",
 "size": "20.00 GB",
 "support_discard": "0",
 "vendor": "0x1af4"
 },
 "vdd": {
 "holders": [],
 "host": "SCSI storage controller: Red Hat, Inc Virtio block device",
 "model": null,
 "partitions": {},
 "removable": "0",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "",
 "sectors": "41943040",
 "sectorsize": "512",
 "size": "20.00 GB",
 "support_discard": "0",
 "vendor": "0x1af4"
 },
 "vde": {
 "holders": [],
 "host": "SCSI storage controller: Red Hat, Inc Virtio block device",
 "model": null,
 "partitions": {},
 "removable": "0",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "",
 "sectors": "41943040",
 "sectorsize": "512",
 "size": "20.00 GB",
 "support_discard": "0",
 "vendor": "0x1af4"
 }
 },
 "ansible_distribution": "Ubuntu",
 "ansible_distribution_major_version": "16",
 "ansible_distribution_release": "xenial",
 "ansible_distribution_version": "16.04",
 "ansible_dns": {
 "nameservers": [
 "10.10.0.5"
],
 "search": [
 "maas"
]
 },
 "ansible_domain": "maas",
 "ansible_ens3": {
 "active": true,
 "device": "ens3",
 "ipv4": {
 "address": "10.10.0.7",
 "broadcast": "10.10.0.255",
 "netmask": "255.255.255.0",
 "network": "10.10.0.0"
 },
 "ipv6": [
 {
 "address": "fe80::5054:ff:fe36:85df",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "52:54:00:36:85:df",
 "mtu": 1500,
 "pciid": "virtio0",
 "promisc": false,
 "type": "ether"
 },
 "ansible_env": {
 "HOME": "/root",
 "LANG": "C.UTF-8",
 "LC_ALL": "C.UTF-8",
 "LC_MESSAGES": "C.UTF-8",
 "LOGNAME": "root",
 "MAIL": "/var/mail/root",
 "PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin",
 "PWD": "/home/ansible",
 "SHELL": "/bin/bash",
 "SUDO_COMMAND": "/bin/sh -c echo BECOME-SUCCESS-asonqrabuzwmtwyrpvxcbvdcgteywelc; LANG=C.UTF-8 LC_ALL=C.UTF-8 LC_MESSAGES=C.UTF-8 /usr/bin/python /home/ansible/.ansible/tmp/ansible-tmp-1478174055.69-205903417866656/setup; rm -rf \"/home/ansible/.ansible/tmp/ansible-tmp-1478174055.69-205903417866656/\" > /dev/null 2>&1",
 "SUDO_GID": "1000",
 "SUDO_UID": "1000",
 "SUDO_USER": "ansible",
 "TERM": "unknown",
 "USER": "root",
 "USERNAME": "root"
 },
 "ansible_fips": false,
 "ansible_form_factor": "Other",
 "ansible_fqdn": "keen-skunk.maas",
 "ansible_gather_subset": [
 "hardware",
 "network",
 "virtual"
],
 "ansible_hostname": "keen-skunk",
 "ansible_interfaces": [
 "lo",
 "ens3"
],
 "ansible_kernel": "4.4.0-45-generic",
 "ansible_lo": {
 "active": true,
 "device": "lo",
 "ipv4": {
 "address": "127.0.0.1",
 "broadcast": "host",
 "netmask": "255.0.0.0",
 "network": "127.0.0.0"
 },
 "ipv6": [
 {
 "address": "::1",
 "prefix": "128",
 "scope": "host"
 }
],
 "mtu": 65536,
 "promisc": false,
 "type": "loopback"
 },
 "ansible_lsb": {
 "codename": "xenial",
 "description": "Ubuntu 16.04.1 LTS",
 "id": "Ubuntu",
 "major_release": "16",
 "release": "16.04"
 },
 "ansible_lvm": {
 "lvs": {},
 "vgs": {}
 },
 "ansible_machine": "x86_64",
 "ansible_machine_id": "0e6a3562c17049e8a294af590f730ed4",
 "ansible_memfree_mb": 128,
 "ansible_memory_mb": {
 "nocache": {
 "free": 384,
 "used": 104
 },
 "real": {
 "free": 128,
 "total": 488,
 "used": 360
 },
 "swap": {
 "cached": 0,
 "free": 975,
 "total": 975,
 "used": 0
 }
 },
 "ansible_memtotal_mb": 488,
 "ansible_mounts": [
 {
 "device": "/dev/vda1",
 "fstype": "ext4",
 "mount": "/",
 "options": "rw,relatime,data=ordered",
 "size_available": 12425428992,
 "size_total": 15718117376,
 "uuid": "411bdb0c-80be-4a23-9876-9ce59f8f1f6a"
 }
],
 "ansible_nodename": "keen-skunk",
 "ansible_os_family": "Debian",
 "ansible_pkg_mgr": "apt",
 "ansible_processor": [
 "GenuineIntel",
 "Intel Core Processor (Haswell, no TSX)"
],
 "ansible_processor_cores": 1,
 "ansible_processor_count": 1,
 "ansible_processor_threads_per_core": 1,
 "ansible_processor_vcpus": 1,
 "ansible_product_name": "Standard PC (i440FX + PIIX, 1996)",
 "ansible_product_serial": "NA",
 "ansible_product_uuid": "0F26C53A-4CE6-4FDD-9E4B-ED7400ABF8EB",
 "ansible_product_version": "pc-i440fx-xenial",
 "ansible_python": {
 "executable": "/usr/bin/python",
 "has_sslcontext": true,
 "type": "CPython",
 "version": {
 "major": 2,
 "micro": 12,
 "minor": 7,
 "releaselevel": "final",
 "serial": 0
 },
 "version_info": [
 2,
 7,
 12,
 "final",
 0
]
 },
 "ansible_python_version": "2.7.12",
 "ansible_selinux": false,
 "ansible_service_mgr": "systemd",
 "ansible_ssh_host_key_dsa_public": "AAAAB3NzaC1kc3MAAACBAI1VgHKG80TcfuMIwCwbGyT+IoA+wTxzx/CscE/QI+DiNQFV3vbE3pRZuAuzWu+SeNfxfP7ZCc57Yc9KvZjImvsOTk1mzMO1xCuHWmLUOAzvmf3fuTYAp6+UzpqKuOHbAVyD7QzccuEyIJ6nirg6QHu4eyLftm1pMrSyGolYJvfrAAAAFQDlqlEMLTB97VeBYnPl2WtZCskRpwAAAIAve8TIAMKYUYkAxvyYtA5yATiFsdnfQy6fldfQNMwspgW0fd8Klm9c5ioeQFh0172kG9StybElQrhknqcjxo3sDRvrjFvdpiLBqZIWy6NWqsztdGsrEI+KZMJc0DhBj1k9Arsp5CEQS21vyEeXe6x1RY/e3IX4uh1FmKruSB6FbQAAAIA/8jPxLt3zZ7cwNQhQevwQ3MCU6cgzIUJnZaVdw+G1uWIw6bbYxB60clT4+Z3jajIIx6pWnviQUQqKy3Uj4Ua+N9vnEz5JgMrvxVXzOYDXJ2U/xgKuE52xV+B3+gJMA3prSdlRGhuAwQbx9ql/B7PmTdND7ZNw35GOalbMrIY/yw==",
 "ansible_ssh_host_key_ecdsa_public": "AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBP02SVRKRQDJllThy5fVh0Rm8hx8fkKvYzgt73ghPx/FSCWnvzuzrA9yNWR7iBnkcgkpNiUHJwH1Seg3V1NTZ/Y=",
 "ansible_ssh_host_key_ed25519_public": "AAAAC3NzaC1lZDI1NTE5AAAAIPcT3RxDxCA1Adc/k+eDRN5IpAkx201rypKJpnydPXLw",
 "ansible_ssh_host_key_rsa_public": "AAAAB3NzaC1yc2EAAAADAQABAAABAQC7ur+mkamaX/Wnsz90mlwca8GxW58ti/UQwqT89rCv12JSlR2v/Crer8b4zcea06EgCP/Z0ow6RF/LxVNEUFlwtkZJ6inXL6WOrNu9BphBuBMy8+f3BqlMMIs4zEQAoESOQssHA66JhQSYdM1cHYAUUtFNmP8Ht9Ik32qpkGPwU2bEaujCIbkSBtQ1Rd6rv03jMnfS7f/Guv//RegNpErT7apAp/fZ/OdJw6+6cE13AgzXyjcBWkrnHVyvUMB8VWr9ExNKtEwetBYVGVt6CT6icrr4r3ceD+aQDYczzawZIKA+TTjTrLy6l9hpCId81/PywaddJJWqmQNSZHmva+GX",
 "ansible_swapfree_mb": 975,
 "ansible_swaptotal_mb": 975,
 "ansible_system": "Linux",
 "ansible_system_capabilities": [
 "cap_chown",
 "cap_dac_override",
 "cap_dac_read_search",
 "cap_fowner",
 "cap_fsetid",
 "cap_kill",
 "cap_setgid",
 "cap_setuid",
 "cap_setpcap",
 "cap_linux_immutable",
 "cap_net_bind_service",
 "cap_net_broadcast",
 "cap_net_admin",
 "cap_net_raw",
 "cap_ipc_lock",
 "cap_ipc_owner",
 "cap_sys_module",
 "cap_sys_rawio",
 "cap_sys_chroot",
 "cap_sys_ptrace",
 "cap_sys_pacct",
 "cap_sys_admin",
 "cap_sys_boot",
 "cap_sys_nice",
 "cap_sys_resource",
 "cap_sys_time",
 "cap_sys_tty_config",
 "cap_mknod",
 "cap_lease",
 "cap_audit_write",
 "cap_audit_control",
 "cap_setfcap",
 "cap_mac_override",
 "cap_mac_admin",
 "cap_syslog",
 "cap_wake_alarm",
 "cap_block_suspend",
 "37+ep"
],
 "ansible_system_capabilities_enforced": "True",
 "ansible_system_vendor": "QEMU",
 "ansible_uptime_seconds": 107,
 "ansible_user_dir": "/root",
 "ansible_user_gecos": "root",
 "ansible_user_gid": 0,
 "ansible_user_id": "root",
 "ansible_user_shell": "/bin/bash",
 "ansible_user_uid": 0,
 "ansible_userspace_architecture": "x86_64",
 "ansible_userspace_bits": "64",
 "ansible_virtualization_role": "guest",
 "ansible_virtualization_type": "kvm",
 "module_setup": true
 },
 "fqdn": "keen-skunk",
 "ip": "10.10.0.7",
 "name": "keen-skunk",
 "state": "operational",
 "username": "ansible"
 },
 "id": "0f26c53a-4ce6-4fdd-9e4b-ed7400abf8eb",
 "initiator_id": null,
 "model": "server",
 "time_deleted": 0,
 "time_updated": 1478174236,
 "version": 2
}

Field description

	Field
	Description

	cluster_id
	ID of the cluster which has this server.

	facts
	Ansible facts for that server.

	fqdn
	FQDN of the server.

	name
	Human-readable name of the server.

	state
	State of the server (operational, off etc)

	username
	Username which Ansible uses to connect to this server.

Possible states:

	State
	Description

	operational
	Server is up and running.

	off
	Server was excluded from Decapod.

	maintenance_no_reconfig
	Server is in maintenance, but no cluster reconfiguration is required.

	maintenance_reconfig
	Server is in maintenance, cluster reconfiguration is required.

Playbook Configuration

Every playbook requires configuration. This model presents such
configuration. On create of playbook configuration, Decapod generates
config for given server list and playbook according to best practices.
It just proposes a good config, user always may update it.

JSON Schema

{
 "name": {"$ref": "#/definitions/non_empty_string"},
 "playbook_id": {"$ref": "#/definitions/non_empty_string"},
 "cluster_id": {"$ref": "#/definitions/uuid4"},
 "configuration": {"type": "object"}
}

Real-world Example

{
 "data": {
 "cluster_id": "1597a71f-6619-4db6-9cda-a153f4f19097",
 "configuration": {
 "global_vars": {
 "ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/shrimp_common/facts/ceph_facts_module.py.j2",
 "ceph_stable": true,
 "ceph_stable_distro_source": "jewel-xenial",
 "ceph_stable_release": "jewel",
 "ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
 "cluster": "ceph",
 "cluster_network": "10.10.0.0/24",
 "copy_admin_key": true,
 "fsid": "1597a71f-6619-4db6-9cda-a153f4f19097",
 "journal_collocation": true,
 "journal_size": 100,
 "max_open_files": 131072,
 "nfs_file_gw": false,
 "nfs_obj_gw": false,
 "os_tuning_params": [
 {
 "name": "kernel.pid_max",
 "value": 4194303
 },
 {
 "name": "fs.file-max",
 "value": 26234859
 }
],
 "public_network": "10.10.0.0/24"
 },
 "inventory": {
 "_meta": {
 "hostvars": {
 "10.10.0.2": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.3": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.4": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.7": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdd",
 "/dev/vde",
 "/dev/vdc",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 },
 "10.10.0.8": {
 "ansible_user": "ansible",
 "devices": [
 "/dev/vdd",
 "/dev/vde",
 "/dev/vdc",
 "/dev/vdb"
],
 "monitor_interface": "ens3"
 }
 }
 },
 "clients": [],
 "iscsi_gw": [],
 "mdss": [],
 "mons": [
 "10.10.0.2"
],
 "nfss": [],
 "osds": [
 "10.10.0.7",
 "10.10.0.8",
 "10.10.0.3",
 "10.10.0.4"
],
 "rbdmirrors": [],
 "restapis": [
 "10.10.0.2"
],
 "rgws": []
 }
 },
 "name": "deploy",
 "playbook_id": "cluster_deploy"
 },
 "id": "fd76cea9-3efa-4432-854c-fee30ca79ddb",
 "initiator_id": "9d010f3f-2ec0-4079-ae8c-f46415e2530c",
 "model": "playbook_configuration",
 "time_deleted": 0,
 "time_updated": 1478174220,
 "version": 2
}

Field description

	Field
	Description

	cluster_id
	ID of the cluster to deploy.

	configuration
	Configuration of the playbook.

	name
	Name of the playbook configuration.

	playbook_id
	ID of the playbook to use.

Configuration differs from one playbook to another. Please check
documentation on playbook plugins (TODO) to get a meaning of each
configuration option.

Execution

Execution is the model, which incapsulates data about execution of
certain playbook configuration on the cluster. You may consider it as a
run of ansible-playbook.

JSON Schema

{
 "playbook_configuration": {
 "type": "object",
 "additionalProperties": false,
 "required": ["id", "version"],
 "properties": {
 "id": {"$ref": "#/definitions/uuid4"},
 "version": {"$ref": "#/definitions/positive_integer"}
 }
 },
 "state": {"$ref": "#/definitions/non_empty_string"}
}

Real-world Example

{
 "data": {
 "playbook_configuration": {
 "id": "fd76cea9-3efa-4432-854c-fee30ca79ddb",
 "version": 2
 },
 "state": "failed"
 },
 "id": "6f016e18-97c4-4069-9e99-70862d98e46a",
 "initiator_id": null,
 "model": "execution",
 "time_deleted": 0,
 "time_updated": 1478175025,
 "version": 3
}

Field description

	Field
	Description

	playbook_configuration
	Information about ID and version of used playbook configuration.

	state
	State of execution (failed, completed etc)

Possible states:

	State
	Description

	created
	Execution was created but not started yet.

	started
	Execution is in progress.

	completed
	Execution was completed successfuly.

	failed
	Execution was failed.

	canceling
	Canceling of execution is in progress.

	canceled
	Execution has been canceled.

Execution Step

This is a model of step of playbook execution. Step is a granular task
of configuration management system.

JSON Schema

{
 "error": {"type": "object"},
 "execution_id": {"$ref": "#/definitions/uuid4"},
 "name": {"$ref": "#/definitions/non_empty_string"},
 "result": {"$ref": "#/definitions/non_empty_string"},
 "role": {"$ref": "#/definitions/non_empty_string"},
 "server_id": {"$ref": "#/definitions/uuid4"},
 "time_started": {"$ref": "#/definitions/positive_integer"},
 "time_finished": {"$ref": "#/definitions/positive_integer"}
}

Real-world Example

{
 "data": {
 "error": {},
 "execution_id": "6f016e18-97c4-4069-9e99-70862d98e46a",
 "name": "set config and keys paths",
 "result": "skipped",
 "role": "ceph-restapi",
 "server_id": "3ee25709-215d-4f51-8348-20b4e7390fdb",
 "time_finished": 1478175019,
 "time_started": 1478175019
 },
 "id": "581b292b3ceda10087ab8d41",
 "initiator_id": "6f016e18-97c4-4069-9e99-70862d98e46a",
 "model": "execution_step",
 "time_deleted": 0,
 "time_updated": 1478175019,
 "version": 1
}

Field description

	Field
	Description

	error
	Error data from Ansible

	execution_id
	ID of execution made

	name
	Name of the task which was executed

	result
	Result of the task execution (failed, ok, ...).

	role
	Role which task belongs to.

	server_id
	ID of the server where task was performed.

	time_started
	UNIX timestamp when task was started.

	time_finished
	UNIX timestamp when task was finished.

Possible states:

	State
	Description

	ok
	Task was executed without any problems.

	skipped
	Task execution was skipped.

	failed
	Task was failed.

	unreachable
	Task was not executed because remote host is unreachable.

Token

Token model presents an authentication token. Token is a string which
should be put in Authorization header of every request and Decapod
API uses it as an authentication mean for operations.

version is rudimentary field here and kept for consistency. Do not
rely on this field, it always equals 1.

JSON Schema

{
 "user": {"type": "User Model"}
 "expires_at": {"$ref": "#/definitions/positive_integer"}
}

Real-world Example

{
 "data":{
 "expires_at":1479455919,
 "user":{
 "data":{
 "email":"noreply@example.com",
 "full_name":"Root User",
 "login":"root",
 "role_id":"4f96f3b0-85e5-4735-8c97-34fbef157c9d"
 },
 "id":"ee3944e8-758e-45dc-8e9e-e220478e442c",
 "initiator_id":null,
 "model":"user",
 "time_deleted":0,
 "time_updated":1479295535,
 "version":1
 }
 },
 "id":"cc6cf706-2f26-4975-9885-0d9c234491b2",
 "initiator_id":"ee3944e8-758e-45dc-8e9e-e220478e442c",
 "model":"token",
 "time_deleted":0,
 "time_updated":1479454119,
 "version":1
}

Field description

	Field
	Description

	expires_at
	UNIX timestamp of moment when this token will be considered as expired.

	user
	Expanded model of user logged in.

Usage example

As mentioned in decapodlib API, Decapod provides RPC client
for interaction with remote API. This communication is done
using HTTP/HTTPS protocols and client, mostly, works as a thin
layer between API and your code. RPC client uses Requests [http://docs.python-requests.org/en/master/] library to manage
keep-alive connection to API and does transparent authentication so you
do not need to worry about explicit session objects or explicit loggin
in/loggin out from API.

This is short a short tutorial which shows you complete workflow: from
creating new user and role to deployment of Ceph cluster.

Before doing so, let’s do some assumptions:

	You have Decapod library up and running

	You already have a bunch of future Ceph nodes registered in Decapod

Let’s assume, that all those requirements were fullfiled:

	Decapod API is placed on IP 10.10.0.1. HTTP endpoint of Decapod
is placed on port 8080, HTTPS - 8081.

	Default account is created. Login is root, password is root.

Installation

Installation of decapod API library can be done in 2 ways: using wheel
and from source code directly.

To install from wheel, do following:

$ pip install decapodlib-*-py2.py3-none-any.whl

Note

Please be noticed that naming is following to PEP 0425 [https://www.python.org/dev/peps/pep-0425] which is
mandatory for wheel format (PEP 0427 [https://www.python.org/dev/peps/pep-0427]). This means, that this
package is universal for both Python2 and Python3 (the same is true
for CLI package) also.

decapodlib and decapodcli are both support
Python >= 2.7 and Python >= 3.3.

To install from source code, please do following:

$ git clone --recursive --depth 1 https://github.com/Mirantis/ceph-lcm.git
$ cd ceph-lcm/decapodlib
$ python setup.py install

Initialize client

Decapod uses versioning for its API. Current up to date version is 1.

Every client version is defined in decapodlib.client
module. If you want to use version 1, just pick
decapodlib.client.V1Client. If you want latest and greatest
one, just pick decapodlib.Client - this is an alias to the
latest version.

If you want to use HTTP, just initialize client like this:

>>> client = decapodlib.Client("http://10.10.0.1:8080", "root", "root")

and if you want HTTPS:

>>> client = decapodlib.Client("https://10.10.0.1:8081", "root", "root")

Note

If you use HTTPS with self-signed certificate, please use verify
option to define certificate verification strategy (by default
verification is enabled):

>>> client = decapodlib.Client("http://10.10.0.1:8081", "root", "root", verify=False)

Please refer to documentation of decapodlib.client.V1Client
to get details about options on client initialization.

Create new user

Now let’s create new user with new role. If you already have a role
to assign, you can do it on user creation, but to have this tutorial
complete, let’s do it in several steps.

To please check signature of
decapodlib.client.V1Client.create_user() method.

>>> user = client.create_user("mylogin", "myemail@mydomain.com", "Jane Doe")
>>> print(user["id"])
... "b6631e30-94c8-44dd-b990-1662f3e28788"
>>> print(user["data"]["login"])
... "mylogin"
... print(user["data"]["role_id"])
... None

So, new user is created. To get example of the user model, please check
User.

Please be noticed, that no password is set on user create. User will get
his password in his email after creating of user. If she wants, she may
change it later, resetting the password.

Let’s assume, that user’s password is mypassword.

Note

As mentioned in API models, decapod API returns JSONs and client
works with parsed JSONs. No models or similar datastructures are
used, just parsed JSONs, so except to get lists and dicts from RPC
client responses.

Create new role

You may consider Role as a named set of permissions. To get a list of
permissions, please use decapodlib.V1Client.get_permissions()
method.

>>> permissions = client.get_permissions()
>>> print({perm["name"] for perm in permissions["items"]})
... {"api", "permissions"}

Let’s create role, which can only view items, but cannot do any active
actions:

>>> playbook_permissions = []
>>>
>>> api_permissions = []
>>> api_permissions.append("view_cluster")
>>> api_permissions.append("view_cluster_versions")
>>> api_permissions.append("view_cluster_versions")
>>> api.permissions.append("view_execution")
>>> api.permissions.append("view_execution_steps")
>>> api.permissions.append("view_execution_version")
>>> api.permissions.append("view_playbook_configuration")
>>> api.permissions.append("view_playbook_configuration_version")
>>> api.permissions.append("view_role")
>>> api.permissions.append("view_role_versions")
>>> api.permissions.append("view_server")
>>> api.permissions.append("view_server_versions")
>>> api.permissions.append("view_user")
>>> api.permissions.append("view_user_versions")
>>>
>>> our_permissions = {"playbook": playbook_permissions, "api": api_permissions}
>>>
>>> new_role = client.new_role("viewer", our_permissions)
>>> print(new_role["id"])
... "ea33fc23-8679-4d57-af53-dff960da7021"

Assign user with role

To assign our viewer role to mylogin user, we need to update her.
Updating in decapod is slightly different to update process in other
libraries. Decapod does not do any update in place, it creates new
version of the same entity. So updates and deletes doing progression of
the same value and it is possible to access any versions were made in
Decapod using API.

Important

To update model, we need to update its data fieldset (please check
Basic model for details). Do not update any field except
of data, you will get 400 Bad Request on such attempt.

>>> user["data"]["role_id"] = new_role["id"]
>>> updated_user = client.update_user(user)
>>> print(user["version"])
... 1
>>> print(updated_user["version"])
... 2
>>> print(updated_user["data"]["role_id"] == new_role["id"])
... True

Delete user

Now it is a time to delete this user because it was created for
illustrative purposes only.

>>> deleted_user = client.delete_user(user["id"])
>>> print(deleted_user["version"])
... 3
>>> print(deleted_user["time_deleted"])
... 1479379541

The thing is: as mentioned before, no actual deletion is done in
Decapod, user is archived but not removed from database. It is marked
with tombstone, time_deleted which is UNIX timestamp, when deletion
was made. If user is active, then time_deleted is 0, otherwise
it equals to timestamp when deletion was made.

If user model was deleted, it is not possible to login as such user,
his access tokens are revoked. It is also not possible to create any
modification with such model. Deleted is deleted.

Since deletion does not do any removing from DB, you may consider that
process as a combination of archivation and sealing.

Deploy Ceph cluster

Now it is a time to deploy actual Ceph cluster. So, we need to do following:

	Create new cluster model

	Create new playbook configuration to deploy that cluster

	Run execution of that playbook configuration.

Create new cluster model

To deploy new cluster, first we have to create model for that. You may
interpret cluster as a named holder for actual Ceph configuration.

>>> cluster = client.create_cluster("ceph")

Also, it is possible to delete cluster right now with
decapodlib.client.V1Client.delete_cluster because it has no
assigned servers. If cluster has servers assigned, it is not possible to
delete it.

Create new playbook configuration

Playbook configuration is a settings for playbook to be
executed on given set of servers. To get playbooks, execute
decapodlib.client.V1Client.get_playbooks() (please check method
documentation for example of results).

>>> playbooks = client.get_playbooks()

For now, we are interested in cluster_deploy playbook. It states
that it requires the server list. Some playbooks require explicit server
list, some - don’t. This is context dependend. For example, if you want
to purge whole cluster with purge_cluster playbook, it makes no
sense to specify all servers: purginig cluster affects all servers in
this cluster, so playbook configuration will be created for all servers
in such cluster.

To deploy clusters, we have to specify servers. To get a list of active
servers, just use appropriate decapodlib.V1Client.get_servers()
method:

>>> servers = client.get_servers()

To run playbooks, we need only IDs of servers. For simplicity of
tutorial, let’s assume that we want to use all known servers for that
cluster.

>>> server_ids = [server["id"] for server in servers]

Not everything is ready for creating our playbook configuration.

>>> config = client.create_playbook_configuration("cephdeploy", cluster["id"], "cluster_deploy", server_ids)

Done, configuration is created. Please check
Playbook Configuration to get description
of configuration options. If you want to modify
something (e.g. add another servers as monitors), use
decapodlib.client.V1Client.update_playbook_configuration()
method.

Execute playbook configuration

After you have good enough playbook configuration, it is a time to
execute it.

>>> execution = client.create_execution(config["id"], config["version"])

Note

Please pay attention that you need both playbook configuration ID
and version. This is done intentionally because you may want to
execute another version of configuration.

When execution is created, it does not start immediately. API service
creates task for controller service in UNIX spooling style and
controller starts to execute it if it is possible. Decapod uses server
locking to avoid collisions in playbook executions, so execution will
start only when locks for all required servers can be acquired.

You can check status of execution by requesting model again.

>>> execution = client.get_execution(execution["id"])
>>> print(execution["data"]["state"])
>>> "started"

When execution is started, you can track it’s steps using
decapodlib.client.V1Client.get_execution_steps() method.

>>> steps = client.get_execution_steps(execution["id"])

This will return user a models of execution steps for a following
execution. When execution is finished, it is also possible to request
whole log of execution in plain text (basically, it is just an stdout on
ansible-playbook).

>>> log = client.get_execution_log(execution["id"])

Execution is completed when its state either completed or
failed. Completed means that everything is OK, failed - something
went wrong.

decapodlib API

decapodlib is a library to work with Decapod API. Also, it provides user
with a bunch of additional convenient utilities.

Usage example

API

	decapodlib
	Library to work with Decapod API.

	decapodlib.client
	This module contains implementation of RPC client for Decapod API.

	decapodlib.auth
	This module contains implementation of authorization for Decapod API.

	decapodlib.exceptions
	Exceptions raised in decapodlib.

	decapodlib.cloud_config
	This module has routines to help user to build user-data configs for cloud-init [http://cloudinit.readthedocs.io].

decapodlib

Library to work with Decapod API.

Top level module provides a list of shortcuts to use with Decapod. Right
now, it has only current decapodlib.Client implementation as
decapodlib.Client.

	
decapodlib.Client

	An actual version of JSON client for Decapod.

alias of V1Client

decapodlib.client

This module contains implementation of RPC client for Decapod API.

Decapod client Client is a simple RPC client and thin wrapper
for the requests [http://docs.python-requests.org/en/master/] library
which allows end user to work with remote API without worrying about
connections and endpoints.

RPC client itself manages authorization (therefore you have to supply
it with user/password pair on initialization) so there is no need in
explicit session objects but if you do not like that way, you may always
relogin explicitly.

Usage example:

client = Client(url="http://localhost", login="root", password="root")

This will initialize new client. Initialization does not imply immediate login,
login would be occured thread-safely on the first real method execution.

users = client.get_users()

This will return end user a list with active users in Decapod.

[
 {
 "data": {
 "email": "noreply@example.com",
 "full_name": "Root User",
 "login": "root",
 "role_id": "37fb532f-2620-4e0d-80e6-b68ed6988a6d"
 },
 "id": "6567c2ab-54cc-40b7-a811-6147a3f3ea83",
 "initiator_id": null,
 "model": "user",
 "time_deleted": 0,
 "time_updated": 1478865388,
 "version": 1
 }
]

Incoming JSON will be parsed. If it is not possible,
decapodlib.exceptions.DecapodError will be raised.

	
class decapodlib.client.Client(url, login, password, timeout=None, verify=True, certificate_file=None)

	A base RPC client model.

	Parameters:	
	url (str [https://docs.python.org/2/library/functions.html#str]) – URL of Decapod API (without version prefix like /v1).

	login (str [https://docs.python.org/2/library/functions.html#str]) – Login of user in Decapod.

	password (str [https://docs.python.org/2/library/functions.html#str]) – Password of user in Decapod.

	timeout (int [https://docs.python.org/2/library/functions.html#int] or None) – Timeout for remote requests. If None is set,
default socket timeout (e.g which is set by
socket.setdefaulttimeout() [https://docs.python.org/2/library/socket.html#socket.setdefaulttimeout]) will be used.

	verify (bool [https://docs.python.org/2/library/functions.html#bool]) – If remote URL implies SSL, then using this option
client will check SSL certificate for validity.

	certificate_file (str [https://docs.python.org/2/library/functions.html#str] or None) – If SSL works with client certificate, this
option sets the path to such certificate. If None is set,
then it implies that no client certificate should be used.

	
AUTH_CLASS = None

	Base class for authenication.

	
class decapodlib.client.V1Client(url, login, password, timeout=None, verify=True, certificate_file=None)

	Implemetation of decapodlib.client.Client
which works with API version 1.

Please check parameters for decapodlib.client.Client class.

Note

All **kwargs keyword arguments here are the same as
requests.Session.request() takes.

	
AUTH_CLASS

	alias of V1Auth

	
cancel_execution(execution_id, **kwargs)

	This method cancels existing execution.

This method does DELETE /v1/execution/ endpoint call.

	Parameters:	execution_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form of
execution’s ID.

	Returns:	Canceled execution model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
create_cluster(name, **kwargs)

	This method creates new cluster model.

This method does POST /v1/cluster/ endpoint call.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the cluster.

	Returns:	New cluster model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
create_execution(playbook_configuration_id, playbook_configuration_version, **kwargs)

	This method creates new execution model.

This method does POST /v1/execution/ endpoint call.

	Parameters:	
	playbook_configuration_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in
string form of playbook configuration’s ID.

	playbook_configuration_version (int [https://docs.python.org/2/library/functions.html#int]) – Version of playbook
configuration model.

	Returns:	New execution model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
create_playbook_configuration(name, cluster_id, playbook_id, server_ids, hints=None, **kwargs)

	This method creates new playbook configuration model.

This method does POST /v1/playbook_configuration/ endpoint
call.

Hints for playbook configuration are the list of optional
parameters for creating playbook configuration. It
has to be the list key/value parameters obtained from
decapodlib.client.V1Client.get_playbooks().

[
 {
 "id": "dmcrypt",
 "value": true
 }
]

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the playbook configuration.

	cluster_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of cluster’s ID

	playbook_id (str [https://docs.python.org/2/library/functions.html#str]) – ID of playbook to use.

	server_ids ([str [https://docs.python.org/2/library/functions.html#str], ...]) – List of server UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string
form of server model IDs.

	hints (list [https://docs.python.org/2/library/functions.html#list]) – List of hints for playbook configuration.

	Returns:	New cluster model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
create_role(name, permissions, **kwargs)

	This method creates new role model.

This method does POST /v1/role endpoint call.

This method accepts parameter permissions. This is a list
of permissions like that:

[
 {
 "name": "playbook",
 "permissions": [
 "add_osd",
 "cluster_deploy",
 "hello_world",
 "purge_cluster",
 "remove_osd"
]
 },
 {
 "name": "api",
 "permissions": [
 "create_cluster",
 "create_execution",
 "create_playbook_configuration",
 "create_role",
 "create_server",
 "create_user",
 "delete_cluster",
 "delete_execution",
 "delete_playbook_confuiguration",
 "delete_role",
 "delete_server",
 "delete_user",
 "edit_cluster",
 "edit_playbook_configuration",
 "edit_role",
 "edit_server",
 "edit_user",
 "view_cluster",
 "view_cluster_versions",
 "view_execution",
 "view_execution_steps",
 "view_execution_version",
 "view_playbook_configuration",
 "view_playbook_configuration_version",
 "view_role",
 "view_role_versions",
 "view_server",
 "view_server_versions",
 "view_user",
 "view_user_versions"
]
 }
]

So, each element is a dict with name and permissions
field.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the role.

	permissions (list [https://docs.python.org/2/library/functions.html#list]) – A list of permissions. Please
check example above.

	Returns:	New role model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
create_server(server_id, host, username, **kwargs)

	This method creates new server model.

This method does POST /v1/server/ endpoint call.

Warning

You should avoid to use this method manually.
Servers must be discovered using cloud-init [https://cloudinit.readthedocs.io/en/latest/] based
discovery mechanism.

	Parameters:	
	server_id (str [https://docs.python.org/2/library/functions.html#str]) – Unique ID of server.

	host (str [https://docs.python.org/2/library/functions.html#str]) – Hostname of the server (should be accessible by
Decapod). It is better to have FQDN here.

	username (str [https://docs.python.org/2/library/functions.html#str]) – The name of the user for Ansible on this server.
Decapod will use Ansible which SSH to machine with hostname
given in host parameter and that username.

	Returns:	New server model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
create_user(login, email, full_name='', role_id=None, **kwargs)

	This method creates new user model.

This method does POST /v1/user/ endpoint call.

	Parameters:	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of the user.

	Returns:	New user model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
delete_cluster(cluster_id, **kwargs)

	This methods deletes cluster model.

Please be noticed that no real delete is performed, cluster
model is marked as deleted (time_deleted > 0) and model will
be skipped from listing, updates are forbidden.

This method does DELETE /v1/cluster/ endpoint call.

	Parameters:	cluster_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of cluster’s ID

	Returns:	Deleted cluster model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
delete_playbook_configuration(playbook_configuration_id, **kwargs)

	This method deletes playbook configuration model.

Please be noticed that no real delete is performed, playbook
configuration model is marked as deleted (time_deleted > 0)
and model will be skipped from listing, updates are forbidden.

This method does DELETE /v1/playbook_configuration/ endpoint
call.

	Parameters:	playbook_configuration_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in
string form of playbook configuration’s ID

	Returns:	Deleted playbook configuration model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
delete_role(role_id, **kwargs)

	This methods deletes role model.

Please be noticed that no real delete is performed, role model
is marked as deleted (time_deleted > 0) and model will be
skipped from listing, updates are forbidden.

This method does DELETE /v1/role/ endpoint call.

	Parameters:	role_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of role’s ID

	Returns:	Deleted role model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
delete_server(server_id, **kwargs)

	This methods deletes server model.

Please be noticed that no real delete is performed, server
model is marked as deleted (time_deleted > 0) and model will
be skipped from listing, updates are forbidden.

This method does DELETE /v1/server/ endpoint call.

	Parameters:	server_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of server’s ID

	Returns:	Deleted server model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
delete_user(user_id, **kwargs)

	This methods deletes user model.

Please be noticed that no real delete is performed, user model
is marked as deleted (time_deleted > 0) and model will be
skipped from listing, updates are forbidden.

This method does DELETE /v1/user/ endpoint call.

	Parameters:	user_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of user’s ID

	Returns:	Deleted user model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_cinder_integration(cluster_id, root='/etc/ceph', **kwargs)

	This method fetches data for integration with Cinder.

This method does GET /v1/cinder_integration/{cluster_id}
endpoint call.

	Parameters:	
	cluster_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of cluster’s ID

	root (str [https://docs.python.org/2/library/functions.html#str]) – Root on file system where files should be stored.

	Returns:	Integration data

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_cluster(cluster_id, **kwargs)

	This method fetches a single cluster model (latest version)
from API.

This method does GET /v1/cluster/{cluster_id} endpoint call.

	Parameters:	cluster_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of cluster’s ID

	Returns:	Cluster model of latest available version

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_cluster_version(cluster_id, version, **kwargs)

	This method fetches a certain version of particular cluster model.

This method does GET /v1/cluster/{cluster_id}/version/{version}
endpoint call.

	Parameters:	
	cluster_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of cluster’s ID

	version (int [https://docs.python.org/2/library/functions.html#int]) – The number of version to fetch.

	Returns:	Cluster model of certain version.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_cluster_versions(cluster_id, query_params, **kwargs)

	This method fetches a list of all versions for a certain cluster
model.

This method does GET /v1/cluster/{cluster_id}/version/ endpoint
call.

	Parameters:	cluster_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of cluster’s ID

	Returns:	List of cluster versions for cluster with ID cluster_id.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_clusters(query_params, **kwargs)

	This method fetches a list of latest cluster models from API.

By default, only active clusters will be listed.

This method does GET /v1/cluster endpoint call.

	Returns:	List of latest cluster models.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_execution(execution_id, **kwargs)

	This method fetches a single execution model (latest version)
from API.

This method does GET /v1/execution/{execution_id} endpoint call.

	Parameters:	execution_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of execution’s ID

	Returns:	Execution model of latest available version

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_execution_log(execution_id, **kwargs)

	This method fetches text execution log for a certain execution.

Execution log is a raw Ansible execution log, that one, which
is generated by ansible-playbook program.

This method does GET /v1/execution/{execution_id}/log
endpoint call.

	Parameters:	execution_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form of
execution’s ID.

	Returns:	List of execution steps.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_execution_steps(execution_id, query_params, **kwargs)

	This method fetches step models of the execution.

This method does GET /v1/execution/{execution_id}/steps
endpoint call.

	Parameters:	execution_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form of
execution’s ID.

	Returns:	List of execution steps.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_execution_version(execution_id, version, **kwargs)

	This method fetches a certain version of particular execution model.

This method does GET
/v1/execution/{execution_id}/version/{version} endpoint call.

	Parameters:	
	execution_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of execution’s ID

	version (int [https://docs.python.org/2/library/functions.html#int]) – The number of version to fetch.

	Returns:	Execution model of certain version.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_execution_versions(execution_id, query_params, **kwargs)

	This method fetches a list of all versions for a certain execution
model.

This method does GET /v1/execution/{execution_id}/version/
endpoint call.

	Parameters:	execution_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of execution’s ID

	Returns:	List of execution versions for execution with
ID execution_id.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_executions(query_params, **kwargs)

	This method fetches a list of latest execution models from API.

This method does GET /v1/execution endpoint call.

	Returns:	List of latest execution models.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_info(**kwargs)

	This method fetches basic data from Decapod API.

It makes no sense to use this method for anything, it is just a
healthcheck that service actually works.

Example of result:

{
 "time": {
 "local": "2016-11-16T12:46:55.868153",
 "unix": 1479300415,
 "utc": "2016-11-16T12:46:55.868220"
 },
 "version": "0.1.0"
}

Important

This method is basically the only one you may access being
not logged in.

	Returns:	Something

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_permissions(**kwargs)

	This method lists exisiting permissions in system. Not those,
which available for current user, but overall ones. This is
mostly required if you compose new role.

This method does GET /v1/permission endpoint call.

Example of result:

{
 "items": [
 {
 "name": "api",
 "permissions": [
 "create_cluster",
 "create_execution",
 "create_playbook_configuration",
 "create_role",
 "create_server",
 "create_user",
 "delete_cluster",
 "delete_execution",
 "delete_playbook_confuiguration",
 "delete_role",
 "delete_server",
 "delete_user",
 "edit_cluster",
 "edit_playbook_configuration",
 "edit_role",
 "edit_server",
 "edit_user",
 "view_cluster",
 "view_cluster_versions",
 "view_execution",
 "view_execution_steps",
 "view_execution_version",
 "view_playbook_configuration",
 "view_playbook_configuration_version",
 "view_role",
 "view_role_versions",
 "view_server",
 "view_server_versions",
 "view_user",
 "view_user_versions"
]
 },
 {
 "name": "playbook",
 "permissions": [
 "add_osd",
 "cluster_deploy",
 "hello_world",
 "purge_cluster",
 "remove_osd"
]
 }
]
}

Note

As you can see, there are 2 types of permissions in Decapod:

	api

	playbook

api permissions are responsible for accessing API
endpoints. If user wants to access some API endpoint, he has
to have appropriate permission in his role. Some endpoints
require several permissions and rule of thumb here is common
sense: is user wants to update role, he has to have a
permission to view it.

playbook permissions are slightly different beasts. Each
permission allows user to execute a certain playbook.

	Returns:	A list of premissions like those mentioned above

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_playbook_configuration(playbook_configuration_id, **kwargs)

	This method fetches a single playbook configuration model
(latest version) from API.

This method does GET
/v1/playbook_configuration/{playbook_configuration_id}
endpoint call.

	Parameters:	playbook_configuration_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in
string form of playbook configuration’s ID.

	Returns:	Playbook configuration model of latest available version.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_playbook_configuration_version(playbook_configuration_id, version, **kwargs)

	This method fetches a certain version of particular playbook
configuration model.

This method does GET
/v1/playbook_configuration/{playbook_configuration_id}/version/{version}
endpoint call.

	Parameters:	
	playbook_configuration_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in
string form of playbook configuration’s ID

	version (int [https://docs.python.org/2/library/functions.html#int]) – The number of version to fetch.

	Returns:	Playbook configuration model of certain version.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_playbook_configuration_versions(playbook_configuration_id, query_params, **kwargs)

	This method fetches a list of all versions for a certain
playbook configuration model.

This method does GET
/v1/playbook_configuration/{playbook_configuration_id}/version/
endpoint call.

	Parameters:	playbook_configuration_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in
string form of playbook configuration’s ID.

	Returns:	List of playbook configuration versions for playbook
configuration with ID playbook_configuration_id.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_playbook_configurations(query_params, **kwargs)

	This method fetches a list of latest playbook configuration models
from API.

By default, only active playbook configurations will be listed.

This method does GET /v1/playbook_configuration endpoint call.

	Returns:	List of latest playbook configuration models.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_playbooks(**kwargs)

	This method returns a list of playbooks avaialble for execution.

This method does GET /v1/playbook endpoint call.

Example of result:

{
 "items": [
 {
 "description": "Adding new OSD to the cluster.",
 "id": "add_osd",
 "name": "Add OSD to Ceph cluster",
 "required_server_list": true,
 "hints": []
 },
 {
 "description": "Ceph cluster deployment playbook.",
 "id": "cluster_deploy",
 "name": "Deploy Ceph cluster",
 "required_server_list": true,
 "hints": [
 {
 "description": "Setup OSDs with dmcrypt",
 "id": "dmcrypt",
 "type": "boolean",
 "values": []
 }
]
 },
 {
 "description": "Example plugin for playbook.",
 "id": "hello_world",
 "name": "Hello World",
 "required_server_list": false
 "hints": []
 },
 {
 "description": "Purge whole Ceph cluster.",
 "id": "purge_cluster",
 "name": "Purge cluster",
 "required_server_list": false,
 "hints": []
 },
 {
 "description": "Remove OSD host from cluster.",
 "id": "remove_osd",
 "name": "Remove OSD host from Ceph cluster",
 "required_server_list": true,
 "hints": []
 }
]
}

Note

Please remember that playbook parameter in POST
/v1/playbook_configuration is id field here.

	Returns:	A list of playbook data.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_role(role_id, **kwargs)

	This method fetches a single role model (latest version)
from API.

This method does GET /v1/role/{role_id} endpoint call.

	Parameters:	role_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of role’s ID

	Returns:	Role model of latest available version

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_role_version(role_id, version, **kwargs)

	This method fetches a certain version of particular role model.

This method does GET /v1/role/{role_id}/version/{version}
endpoint call.

	Parameters:	
	role_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of role’s ID

	version (int [https://docs.python.org/2/library/functions.html#int]) – The number of version to fetch.

	Returns:	Role model of certain version.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_role_versions(role_id, query_params, **kwargs)

	This method fetches a list of all versions for a certain role
model.

This method does GET /v1/role/{role_id}/version/ endpoint
call.

	Parameters:	role_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of role’s ID

	Returns:	List of role versions for role with ID role_id.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_roles(query_params, **kwargs)

	This method fetches a list of latest role models from API.

By default, only active roles will be listed.

This method does GET /v1/role endpoint call.

	Returns:	List of latest role models.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_server(server_id, **kwargs)

	This method fetches a single server model (latest version)
from API.

This method does GET /v1/server/{server_id} endpoint call.

	Parameters:	server_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of server’s ID

	Returns:	Server model of latest available version

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_server_version(server_id, version, **kwargs)

	This method fetches a certain version of particular server model.

This method does GET /v1/server/{server_id}/version/{version}
endpoint call.

	Parameters:	
	server_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of server’s ID

	version (int [https://docs.python.org/2/library/functions.html#int]) – The number of version to fetch.

	Returns:	Server model of certain version.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_server_versions(server_id, query_params, **kwargs)

	This method fetches a list of all versions for a certain server
model.

This method does GET /v1/server/{server_id}/version/
endpoint call.

	Parameters:	server_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of server’s ID

	Returns:	List of server versions for server with ID server_id.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_servers(query_params, **kwargs)

	This method fetches a list of latest server models from API.

By default, only active servers will be listed.

This method does GET /v1/server endpoint call.

	Returns:	List of latest server models.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_user(user_id, **kwargs)

	This method fetches a single user model (latest version)
from API.

This method does GET /v1/user/{user_id} endpoint call.

	Parameters:	user_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of user’s ID

	Returns:	User model of latest available version

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_user_version(user_id, version, **kwargs)

	This method fetches a certain version of particular user model.

This method does GET /v1/user/{user_id}/version/{version}
endpoint call.

	Parameters:	
	user_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of user’s ID

	version (int [https://docs.python.org/2/library/functions.html#int]) – The number of version to fetch.

	Returns:	User model of certain version.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_user_versions(user_id, query_params, **kwargs)

	This method fetches a list of all versions for a certain user
model.

This method does GET /v1/user/{user_id}/version/ endpoint
call.

	Parameters:	user_id (str [https://docs.python.org/2/library/functions.html#str]) – UUID4 (RFC 4122 [https://tools.ietf.org/html/rfc4122.html]) in string form
of user’s ID

	Returns:	List of user versions for user with ID user_id.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
get_users(query_params, **kwargs)

	This method fetches a list of latest user models from API.

By default, only active users will be listed.

This method does GET /v1/user endpoint call.

	Returns:	List of latest user models.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
login(**kwargs)

	This methods logins users into API.

Basically, you do not need to execute this method by yourself,
client will implicitly execute it when needed.

This method does POST /v1/auth endpoint call.

	Returns:	Model of the Token.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
logout(**kwargs)

	This method logouts users from API (after that security token
will be deleted).

Basically, you do not need to execute this method by yourself,
client will implicitly execute it when needed.

This method does DELETE /v1/auth endpoint call.

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
peek_password_reset(reset_token, **kwargs)

	This method checks if password reset with given token is
still requested. It does not consume token, it just checks if
it is possible or not.

Example of result:

{
 "message": "Password reset was requested."
}

	Parameters:	reset_token (str [https://docs.python.org/2/library/functions.html#str]) – Password reset token from email.

	Returns:	A message that password reset was requested.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
put_server(model_data, **kwargs)

	This methods updates server model.

Please be noticed that no real update is performed, just a new
version of the same server is created.

This method does PUT /v1/server/ endpoint call.

	Parameters:	model_data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Updated model of the server.

	Returns:	Updated server model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
request_password_reset(login, **kwargs)

	This method requests password resetting for a user.

Please be noticed that no real password resetting is occured, it
just requesting password reset. After that, user will receive
secret link on his email. If user will proceed that link, he can
actually reset her password.

This method does POST /v1/password_reset endpoint call.

Example of result:

{
 "message": "Password reset was requested."
}

	Parameters:	login (str [https://docs.python.org/2/library/functions.html#str]) – Login of user who is required to reset password.

	Returns:	A message that password reset was requested.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
reset_password(reset_token, new_password, **kwargs)

	This method does actual password resetting.

Example of result:

{
 "message": "Password has been reset."
}

	Parameters:	
	reset_token (str [https://docs.python.org/2/library/functions.html#str]) – Password reset token from email.

	new_password (str [https://docs.python.org/2/library/functions.html#str]) – New password for user.

	Returns:	A message that password was reset.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
update_cluster(model_data, **kwargs)

	This methods updates cluster model.

Please be noticed that no real update is performed, just a new
version of the same cluster is created.

This method does PUT /v1/cluster/ endpoint call.

	Parameters:	model_data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Updated model of the cluster.

	Returns:	Updated cluster model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
update_playbook_configuration(model_data, **kwargs)

	This method updates playbook configuration model.

Please be noticed that no real update is performed, just a new
version of the same playbook configuration is created.

This method does PUT /v1/playbook_configuration/ endpoint
call.

	Parameters:	model_data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Updated model of the playbook configuration.

	Returns:	Updated playbook configuration model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
update_role(model_data, **kwargs)

	This methods updates role model.

Please be noticed that no real update is performed, just a new
version of the same role is created.

This method does PUT /v1/role/ endpoint call.

	Parameters:	model_data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Updated model of the role.

	Returns:	Updated role model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

	
update_user(model_data, **kwargs)

	This methods updates user model.

Please be noticed that no real update is performed, just a new
version of the same user is created.

This method does PUT /v1/user/ endpoint call.

	Parameters:	model_data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Updated model of the user.

	Returns:	Updated user model.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	decapodlib.exceptions.DecapodError – if not possible to
connect to API.

	decapodlib.exceptions.DecapodAPIError – if API returns error
response.

decapodlib.auth

This module contains implementation of authorization for Decapod API.

Decapod client uses requests [http://docs.python-requests.org/en/master/] library
to access its API so authentication is done using
requests’s classes. Please check official guide [http://docs.python-requests.org/en/master/user/advanced/#custom-authentication]
for details.

	
class decapodlib.auth.V1Auth(client)

	Request authentication provider for Decapod API V1.

The idea of that provider is really simple: it stores authentication
token from Decapod API and injects it into proper header on
every request. If no token is defined, it will authorize for you
transparently using decapodlib.client.Client login
method.

	
AUTH_URL = '/v1/auth/'

	URL of authentication.

	
revoke_token()

	Resets information about known token.

	
decapodlib.auth.no_auth(request)

	Trivial authenticator which does no authentication for a request.

decapodlib.exceptions

Exceptions raised in decapodlib.

Please be noticed, that all exception raised from decapodlib
will be wrapped in decapodlib.exceptions.DecapodError or its
subclasses.

	
exception decapodlib.exceptions.DecapodAPIError(response)

	Common error in API.

	Parameters:	response (requests.Response) – Original response which is a base
of that exception.

	
json

	Return this error as parsed JSON.

Example of result:

{
 "code": 403,
 "error": "Forbidden",
 "description": "Access was forbidden!"
}

	
exception decapodlib.exceptions.DecapodError(exc)

	Basic error raised in decapodlib.

	Parameters:	exc (Exception) – Original exception, wrapped in this class.

Original exception is stored in exception field.

decapodlib.cloud_config

This module has routines to help user to build user-data configs for
cloud-init [http://cloudinit.readthedocs.io].

Decapod uses cloud-init to implement server discovery. On each server
boot user-data will be executed (you may consider cloud-init as rc.local
on steroids).

Basically, it creates several files on the host system and put their
execution into host rc.local.

	
decapodlib.cloud_config.generate_cloud_config(url, server_discovery_token, public_key, username, timeout=20, no_discovery=False)

	This function generates user-data config (or cloud config)
for cloud-init.

	Parameters:	
	url (str [https://docs.python.org/2/library/functions.html#str]) – URL of Decapod API. This URL should be accessible
from remote machine.

	server_discovery_token (str [https://docs.python.org/2/library/functions.html#str]) – Server discovery token from Decapod
config.

	public_key (str [https://docs.python.org/2/library/functions.html#str]) – SSH public key of Ansible. This key will be placed
in ~username/.ssh/authorized_keys.

	username (str [https://docs.python.org/2/library/functions.html#str]) – Username of the user, which Ansible will use to
access this host.

	timeout (int [https://docs.python.org/2/library/functions.html#int]) – Timeout of connection to Decapod API.

	no_discovery (bool [https://docs.python.org/2/library/functions.html#bool]) – Generate config with user and packages but no
discovery files. It can be used if user wants to add servers
manually.

	Returns:	Generated user-data in YAML format.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 decapodlib	

 	
 	
 decapodlib.auth	

 	
 	
 decapodlib.client	

 	
 	
 decapodlib.cloud_config	

 	
 	
 decapodlib.exceptions	

Index

 A
 | C
 | D
 | E
 | G
 | J
 | L
 | N
 | P
 | R
 | U
 | V

A

 	
 	AUTH_CLASS (decapodlib.client.Client attribute)

 	(decapodlib.client.V1Client attribute)

 	
 	AUTH_URL (decapodlib.auth.V1Auth attribute)

C

 	
 	cancel_execution() (decapodlib.client.V1Client method)

 	Client (class in decapodlib.client)

 	(in module decapodlib)

 	COMPOSE_PROJECT_NAME

 	create_cluster() (decapodlib.client.V1Client method)

 	
 	create_execution() (decapodlib.client.V1Client method)

 	create_playbook_configuration() (decapodlib.client.V1Client method)

 	create_role() (decapodlib.client.V1Client method)

 	create_server() (decapodlib.client.V1Client method)

 	create_user() (decapodlib.client.V1Client method)

D

 	
 	Decapod CookBook

 	DECAPOD_DOCS_PORT

 	DECAPOD_MONITORING_PORT

 	DecapodAPIError

 	DecapodError

 	decapodlib (module)

 	decapodlib.auth (module)

 	
 	decapodlib.client (module)

 	decapodlib.cloud_config (module)

 	decapodlib.exceptions (module)

 	delete_cluster() (decapodlib.client.V1Client method)

 	delete_playbook_configuration() (decapodlib.client.V1Client method)

 	delete_role() (decapodlib.client.V1Client method)

 	delete_server() (decapodlib.client.V1Client method)

 	delete_user() (decapodlib.client.V1Client method)

E

 	
 	
 environment variable

 	COMPOSE_PROJECT_NAME

 	DECAPOD_DOCS_PORT

 	DECAPOD_MONITORING_PORT

G

 	
 	generate_cloud_config() (in module decapodlib.cloud_config)

 	get_cinder_integration() (decapodlib.client.V1Client method)

 	get_cluster() (decapodlib.client.V1Client method)

 	get_cluster_version() (decapodlib.client.V1Client method)

 	get_cluster_versions() (decapodlib.client.V1Client method)

 	get_clusters() (decapodlib.client.V1Client method)

 	get_execution() (decapodlib.client.V1Client method)

 	get_execution_log() (decapodlib.client.V1Client method)

 	get_execution_steps() (decapodlib.client.V1Client method)

 	get_execution_version() (decapodlib.client.V1Client method)

 	get_execution_versions() (decapodlib.client.V1Client method)

 	get_executions() (decapodlib.client.V1Client method)

 	get_info() (decapodlib.client.V1Client method)

 	get_permissions() (decapodlib.client.V1Client method)

 	get_playbook_configuration() (decapodlib.client.V1Client method)

 	
 	get_playbook_configuration_version() (decapodlib.client.V1Client method)

 	get_playbook_configuration_versions() (decapodlib.client.V1Client method)

 	get_playbook_configurations() (decapodlib.client.V1Client method)

 	get_playbooks() (decapodlib.client.V1Client method)

 	get_role() (decapodlib.client.V1Client method)

 	get_role_version() (decapodlib.client.V1Client method)

 	get_role_versions() (decapodlib.client.V1Client method)

 	get_roles() (decapodlib.client.V1Client method)

 	get_server() (decapodlib.client.V1Client method)

 	get_server_version() (decapodlib.client.V1Client method)

 	get_server_versions() (decapodlib.client.V1Client method)

 	get_servers() (decapodlib.client.V1Client method)

 	get_user() (decapodlib.client.V1Client method)

 	get_user_version() (decapodlib.client.V1Client method)

 	get_user_versions() (decapodlib.client.V1Client method)

 	get_users() (decapodlib.client.V1Client method)

J

 	
 	json (decapodlib.exceptions.DecapodAPIError attribute)

L

 	
 	login() (decapodlib.client.V1Client method)

 	
 	logout() (decapodlib.client.V1Client method)

N

 	
 	no_auth() (in module decapodlib.auth)

P

 	
 	peek_password_reset() (decapodlib.client.V1Client method)

 	put_server() (decapodlib.client.V1Client method)

 	
 	
 Python Enhancement Proposals

 	PEP 0425

 	PEP 0427

R

 	
 	request_password_reset() (decapodlib.client.V1Client method)

 	reset_password() (decapodlib.client.V1Client method)

 	
 	revoke_token() (decapodlib.auth.V1Auth method)

 	
 RFC

 	RFC 4122, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30]

U

 	
 	update_cluster() (decapodlib.client.V1Client method)

 	update_playbook_configuration() (decapodlib.client.V1Client method)

 	
 	update_role() (decapodlib.client.V1Client method)

 	update_user() (decapodlib.client.V1Client method)

V

 	
 	V1Auth (class in decapodlib.auth)

 	
 	V1Client (class in decapodlib.client)

	Introduction

	Install and configure Decapod

	Data models

	Manage users and roles

	Deploy a cluster

	Ceph monitoring

	Use the Decapod CLI

	Backup and restore procedures

	Deploy an operating system on a Ceph node

	Supported Ceph packages

	Playbook plugins

	Upgrade Guide

	Debug snapshot

	Admin service

	Decapod API

 nav.xhtml

 Table of Contents

 		Decapod CookBook

 		Introduction

 		Install and configure Decapod

 		Prerequisites

 		Install Decapod

 		Configure Docker Compose

 		Decapod configuration files

 		ansible_ssh_keyfile.pem

 		SSL certificates

 		config.yaml

 		mongodb.pem

 		Propagation to containers

 		config.yaml file

 		Settings

 		Authentication backends

 		Data models

 		User model

 		Role model

 		Server model

 		Cluster model

 		Decapod playbooks

 		Playbook configuration

 		Playbook execution

 		Manage users and roles

 		Manage users

 		Manage roles

 		Deploy a cluster

 		Create a cluster

 		View servers

 		Create a playbook configuration

 		Execute a playbook configuration

 		Ceph monitoring

 		Use the Decapod CLI

 		Install the Decapod CLI

 		Access the Decapod CLI

 		Cluster deployment workflow

 		Create a cluster

 		Discover a server

 		Create a playbook configuration

 		Update a playbook configuration

 		Execute a playbook configuration

 		Backup and restore procedures

 		Deploy an operating system on a Ceph node

 		Generate user data for cloud-init

 		Prerequisites

 		Generate user data

 		Deploy OS using MAAS

 		Prerequisites

 		Install MAAS

 		Deploy an OS using MAAS

 		Supported Ceph packages

 		Playbook plugins

 		Deploy Ceph cluster

 		Overview

 		Parameters and roles

 		Configuration example

 		Add OSD host

 		Overview

 		Parameters and roles

 		Configuration example

 		Remove OSD host

 		Overview

 		Configuration example

 		Add monitor host

 		Overview

 		Parameters and roles

 		Configuration example

 		Remove montor host

 		Overview

 		Configuration example

 		Purge cluster

 		Overview

 		Parameters and roles

 		Configuration example

 		Telegraf integration

 		Overview

 		Configuration example

 		Telegraf purging

 		Overview

 		Configuration example

 		Upgrade Guide

 		Upgrade from 0.1.x to 1.0

 		Initial Preparations

 		Backup Database

 		Extract Config Files

 		Get Images for Version 1.0

 		Stop and Remove Containers for Version 0.1.x

 		Run 1.0.x Version

 		Set MongoDB Backward Incompatibility (optional)

 		Change root Password (optional)

 		Debug snapshot

 		Admin service

 		Migrations

 		Generate cloud-init user-data config

 		Database maintenence

 		SSH to Ceph hosts

 		Parallel SSH executions

 		Restore deleted entities

 		Unlock servers

 		Password Reset

 		Decapod API

 		Contents

 		API models

 		Usage example

 		decapodlib API

_static/up.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

