
Decapod Documentation
Release 0.1.2

Sergey Arkhipov

Apr 06, 2017

Contents

1 Introduction 3

2 Install and configure Decapod 5

3 Data models 11

4 Manage users and roles 15

5 Deploy a cluster 17

6 Use the Decapod CLI 19

7 Deploy an operating system on a Ceph node 33

8 Supported Ceph packages 37

9 Playbook plugins 39

i

ii

Decapod Documentation, Release 0.1.2

Note: After release 0.1 Shrimp was renamed into Decapod. This guide follows new naming policy but package names
are still shrimp_*.

Contents 1

Decapod Documentation, Release 0.1.2

2 Contents

CHAPTER 1

Introduction

Decapod is a tool that simplifies the deployment and lifecycle management of Ceph. Using Decapod, you can deploy
clusters with best known practices, add new nodes to a cluster, remove them, and purge a cluster, if required. Decapod
provides a simple API to manage cluster configurations. Also, you can use the Decapod web UI to easily manage your
clusters.

Decapod uses Ansible with the ceph-ansible community project to deliver the best user experience. For tasks, you can
use plugins that encapsulate the appropriate settings. Also, you can customize the configuration before execution, if
required.

Decapod provides the following functionality:

• Deploying Ceph on remote nodes

• Adding and removing Ceph roles on machine (for example, deploying an OSD or removing a monitor)

• Purging a cluster

• Upgrading and updating clusters

• Managing partitions on disk devices for Ceph

However, Decapod does not cover:

• Providing a server for PXE

• Managing DHCP

• Managing networks by all means

• Managing host OS packages

• Deploying OS

• Managing partitions on disks that are not related to Ceph

See also:

• Ceph

• Ansible

3

http://ceph.com/
https://www.ansible.com/

Decapod Documentation, Release 0.1.2

• ceph-ansible community project

• Decapod API reference

4 Chapter 1. Introduction

https://github.com/ceph/ceph-ansible
http://decapod.readthedocs.io/en/latest/api/index.html

CHAPTER 2

Install and configure Decapod

This section describes how to install and configure Decapod and includes the following topics:

Prerequisites

You can build Decapod on any commodity node that has Linux or OS X. However, prior to installing Decapod, verify
that your software configurations meet the following requirements:

1. Machine should have pip setuptools>=26 Python packages (does not matter, Python2 or Python3 is used)

2. Machine should have npm>=3 (required to build frontend)

3. Machine should have git, make and docker-engine installed.

4. Machine should have an access to external network

Build images

Debian / Ubuntu 14.04 installation

First, you need to install build dependencies:

$ sudo apt-get update
$ sudo apt-get install -y curl git python python-pip python-setuptools make

Next, you need to install node>=4.x and npm. Unfortunately, trusty and debian stable have obsolete versions in their
repositories, so follow this guide: https://github.com/nodesource/distributions#debian-and-ubuntu-based-distributions

Also, you need to update setuptools to aversion >=26 (previous versions have critical bugs in building wheels with big
sets of package data)

$ sudo pip install 'setuptools>=26'

5

https://github.com/nodesource/distributions#debian-and-ubuntu-based-distributions

Decapod Documentation, Release 0.1.2

Ubuntu 16.04 installation

Please follow the same guide as for trusty installation, but you do not need to install external node: valid packages are
in the official repository now.

$ sudo apt update
$ sudo apt install -y nodejs nodejs-legacy npm

Updating of setuptools is also required.

$ sudo pip install 'setuptools>=26'

Docker-engine installation

To install docker-engine, please follow the official instructions. Also, please pay attention to the DNS configuration.

Cloning of source code repository

$ git clone --recurse-submodules \
https://github.com/Mirantis/ceph-lcm.git decapod

$ cd decapod

Inside repository, please check available versions with git tag. To select specific version, please do git checkout
{tag} && git submodule update --init --recursive.

Building a development version

There is little difference between production and development build. The difference is only in SSH private keys, SSL
certificate and configuration file. In development variant, they are pregenerated and placed in containerization/
files directory of the source code.

To build development images, just execute the following command:

$ make build_containers_dev

Actually, there is not big difference between production and development version. Basically, target
build_containers_dev is a sequence of 2 targets: copy_example_keys and build_containers. Tar-
get copy_example_keys copies hardcoded files, mentioned in Building a production version into correct places.

Since these files are placed in VCS, user has to replace them with private ones on container build.

Building a production version

To build a production version, you need to have your own configuration file, SSH private key for Ansible and SSL
certificate for web frontend. Please check the next section for details. After you place required files in the top level
directory of the source code repository, execute the following command:

$ make build_containers

As a summary, to build production containers, you need to have the following in the top level directory of your source
code repository:

ansible_ssh_keyfile.pem SSH private key which should be used by Ansible to connect to Ceph nodes.

6 Chapter 2. Install and configure Decapod

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/ubuntulinux/#/configure-a-dns-server-for-use-by-docker

Decapod Documentation, Release 0.1.2

ssl.key Private key for SSL/TLS certificate which should be used by web UI.

ssl.crt Signed certificate for SSL/TLS which should be used by web UI.

ssl-dhparam.pem Diffie-Hellman ephemeral parameters for SSL/TLS. This enables perfect-forward secrecy for se-
cured connection.

config.yaml Configuration file for Decapod.

mongodb.pem SSL/TLS pair of certificate and key, concatenated in one file. Required to use secured connection by
MongoDB.

SSH private keys

Warning: Secrecy of the key is on you. Please keep it private.

Decapod uses Ansible to configure remote machines, Ansible uses SSH to connect to remote machines. Therefore, it
is required to propagate SSH private key to Decapod. If you don’t have a prepared SSH private key, you may generate
a new one using the following guide: https://confluence.atlassian.com/bitbucketserver/creating-ssh-keys-776639788.
html

After you generate a new one, copy it to the top level of the source code repository. It has to have name:
ansible_ssh_keyfile.pem. The format of the file is PEM1.

SSL certificate

Warning: Secrecy of the key if on you. Please keep it private. Please do not use self-signed certificates for
production installation.

SSL certificate should have 3 parts: private key for certificate, signed certificate and Diffie-Hellman ephemeral param-
eters.

If you have no such certificates, you may generate new ones using the following instructions:

• https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs

• https://raymii.org/s/tutorials/Strong_SSL_Security_On_nginx.html#Forward_Secrecy_&_Diffie_Hellman_
Ephemeral_Parameters

All SSL keys should be in PEM1 format.

Please put SSL files in the top level of your source code repository:

• Private key should be placed as ssl.key;

• Signed certificate should be placed as ssl.crt;

• Diffie-Hellman parameters should be placed as ssl-dhparam.pem.

1 https://tools.ietf.org/html/rfc1421

2.2. Build images 7

https://confluence.atlassian.com/bitbucketserver/creating-ssh-keys-776639788.html
https://confluence.atlassian.com/bitbucketserver/creating-ssh-keys-776639788.html
https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://raymii.org/s/tutorials/Strong_SSL_Security_On_nginx.html#Forward_Secrecy_&_Diffie_Hellman_Ephemeral_Parameters
https://raymii.org/s/tutorials/Strong_SSL_Security_On_nginx.html#Forward_Secrecy_&_Diffie_Hellman_Ephemeral_Parameters
https://tools.ietf.org/html/rfc1421

Decapod Documentation, Release 0.1.2

Configuration

Configuration for Decapod is done in YAML2 format. Please check the example in containerization/files/
devconfigs/config.yaml.

MongoDB secured connection

To allow SSL/TLS for MongoDB connection, you have to have generated private key and certificate. Mongo allows
to use unified PEM file which contains both items. To get information on generation of such file, please refer official
documentation: https://docs.mongodb.com/manual/tutorial/configure-ssl/#pem-file

To allow SSL/TLS on client side, please be sure that config file has ?ssl=true parameter in URI. For example,
mongodb://database:27017/db won’t use secured connection, but mongodb://database:27017/db?
ssl=true will.

MongoDB authorization/authentication

Note: By default, containers will have no information about users and their passwords.

To use db authentication, please follow the official guide or a community checklist:

• https://docs.mongodb.com/manual/core/security-users/

• https://gist.github.com/leommoore/f977860d22dfb2860fc2

• https://hub.docker.com/_/mongo/

After you have a MongoDB running with the required authentication, please make sure that user/password pair is set
in config file. URI should look like mongodb://user:password@database:27017/db?ssl=true.

Move images

In the future, it will be possible to run decapod services on different machines, but this guide assumes that you have
only one machine with docker and docker-compose. There may be one build machine and another production one. If
you have such a diversity, please use Docker registry to manage Decapod images or dump/load them manually. To do
so, build images and execute the following commands:

$ make dump_images
$ rsync -a output/images/ <remote_machine>:images/
$ scp docker-compose.yml <remote_machine>:docker-compose.yml
$ ssh <remote_machine>
$ cd images
$ for i in $(\ls -1 *.bz2); do docker load -i "$i"; done;
$ cd ..
$ docker-compose up

This will dump docker images, copy them to remote host and load. After that it will be possible to run docker-compose.

2 http://www.yaml.org/spec/1.2/spec.html

8 Chapter 2. Install and configure Decapod

https://docs.mongodb.com/manual/tutorial/configure-ssl/#pem-file
https://docs.mongodb.com/manual/core/security-users/
https://gist.github.com/leommoore/f977860d22dfb2860fc2
https://hub.docker.com/_/mongo/
http://www.yaml.org/spec/1.2/spec.html

Decapod Documentation, Release 0.1.2

Run containers with Decapod

When you have your docker images built, it is time to run Decapod. To do that, you do not need to have source
code at all, images are enough. Minimal requirements to run Decapod in containers are installed docker-engine and
docker-compose.

To install docker-engine, please check instructions for build machine. To install docker-compose, please check the
official guide: https://docs.docker.com/compose/install/

Important: docker-compose should be version 1.6 or later. Please make sure, that you are running a proper one:

$ pip install 'docker-compose>=1.6'

The next thing you need, is configuration for docker-compose. It is placed in the top level of the source code repository
as docker-compose.yml. Place it in any place you like. After that, run it as follows

$ docker-compose up

This will start the service. Docker-compose will use 2 socket binds: 0.0.0.0:9999 and 0.0.0.0:10000. Port 9999
is HTTP endpoint, 10000 - HTTPS. Assuming, that your Decapod production machine uses IP 10.10.0.2, you may
access UI with http://10.10.0.2:9999 or https://10.10.0.2:10000.

2.4. Run containers with Decapod 9

https://docs.docker.com/compose/install/
http://10.10.0.2:9999
https://10.10.0.2:10000

Decapod Documentation, Release 0.1.2

10 Chapter 2. Install and configure Decapod

CHAPTER 3

Data models

Decapod is used to deploy and manage Ceph clusters. All the management functionality is distributed using plugins,
called playbooks. Each playbook requires configuration. This section describes the Decapod data models and entities,
workflows, and terms used in other sections.

The section contains the following topics:

User model

A user is an entity that contains common information about the Decapod user. It has a login, email, password, full
name, and a role. The user model is used for authentication and authorization purposes.

When creating a user model in the system, Decapod sends the new password to the user email. It is possible to reset
the password and set a new one.

A user created without a role can do a bare minimum with the system because even listing the entities requires
permissions. Authorization is performed by assigning a role to the user. A user may have only one role in Decapod.

See also:

• Role model

Role model

A role has two properties: name and permissions. Consider the role as a named set of permissions. Decapod has two
types of permissions:

• API permissions allow using different API endpoints and, therefore, a set of actions available for usage. For
example, to view the list of users, you need to have the view_user permission. To modify the information
about a user, you also require the edit_user permission.

11

Decapod Documentation, Release 0.1.2

Note: Some API endpoints require several permissions. For example, user editing requires both view_user
and edit_user permissions.

• Playbook permissions define a list of playbooks that a user can execute. For example, a user with any role
can execute service playbooks to safely update a host package or add new OSDs. But a user requires special
permissions to execute destructive playbooks, such as purging a cluster or removing OSD hosts.

Server model

The server model defines a server used for Ceph purposes. Servers are detected during the server discovery process.
Each server has a name (FQDN by default), IP, FQDN, state, cluster ID, and facts. A user is only allowed to modify
the server name, other attributes are updated automatically on the server discovery. The facts property is a set of facts
collected by Ansible and returned as is. By default, Ansible collects only its own facts, ignoring Ohai and Facter.

Note: We do not recommend that you manually create a new server using the API. Servers must be discovered by the
discovery protocol.

Server discovery is an automatic process of discovering new servers in Decapod. During this process, Decapod works
passively.

Important: A node operating system deployment is not in the scope of Decapod. The server discovery is performed
using cloud-init, so the only requirement for the node OS is to support cloud-init.

The cloud-init package is required to create a user for Ansible, set the deployment SSH public key for the user’s
authorized keys, and update the /etc/rc.local script. Then, the /etc/rc.local script registers the host in
Decapod.

See also:

• Ohai

• Facter

• The cloud-init documentation

Cluster model

A cluster defines a separate Ceph cluster. It has a default name that you can edit only explicitly. You can delete only
the cluster that has no servers in it.

An explicit cluster model is required because it defines a name of FSID for Ceph. By default, the name of the model
is used as a name of the Ceph cluster and its ID as FSID.

The cluster model configuration is a simple mapping of roles to the list of servers. You cannot manage this configu-
ration explicitly. Instead, you can use playbooks. For example, when executing the playbook for adding a new OSD
host, this host will be added to the list of servers for role osds. If you remove Rados Gateways from the clusters
using an appropriate playbook, these servers will be deleted from the list.

Several models are required to deploy a cluster. Basically, cluster deployment contains the following steps:

12 Chapter 3. Data models

https://docs.chef.io/ohai.html
https://docs.puppet.com/facter
http://cloudinit.readthedocs.io/en/latest/index.html

Decapod Documentation, Release 0.1.2

1. Creating an empty cluster model. This model is a holder for the cluster configuration. Also, it defines the Ceph
FSID and name.

2. Creating a playbook configuration model for the deploy_cluster playbook. This will allow you to deploy
the cluster.

Note: Cluster deployment is an idempotent operation and you may execute it several times.

3. Executing that playbook configuration by creating a new execution. If required, examine the execution steps or
logs.

See also:

• Playbook configuration

• Playbook execution

Decapod playbooks

Decapod uses plugins to deliver the Ceph management functionality. A plugin is a Python package that contains
Ansible playbooks, a configuration file, and the Python code itself.

This section describes the Decapod playbooks and contains the following topics:

Playbook configuration

In most cases, Ansible playbooks are generic and have the capability to inject values: not only the hosts where a
playbook has to be executed but also some arbitrary parameters, for example, Ceph FSID. These parameters are
injected into the Ansible playbooks using the --extra-vars option or by setting them in inventory. A playbook
configuration defines the name of the playbook and its parameters. For simplicity, parameters are split into two
sections:

• The global_vars section contains the global variables for a playbook. Each parameter in the
global_vars section is defined for all hosts. However, the inventory section redefines any parameters.

• The inventory section is used as the Ansible inventory. Mostly, this will be a real inventory. You can change
the section to exclude sensitive information, for example. But in most cases, the inventory parameters are
used as is.

Note: Parameters from the global_vars section will be passed as the --extra-vars parameters. For details,
see the Ansible official documentation.

Basically, configuring a playbook includes:

1. Placing the contents of global_vars into ./inventoryfile.

2. Executing the following command:

$ ansible-playbook -i ./inventoryfile --extra-vars "inventory_section|to_json"
→˓playbook.yaml

Decapod generates the best possible configuration for a given set of Server model models. After that, modify it as
required.

3.5. Decapod playbooks 13

http://docs.ansible.com/ansible/playbooks_variables.html#passing-variables-on-the-command-line

Decapod Documentation, Release 0.1.2

Note: Decapod uses the server IP as a host. This IP is the IP of the machine visible to Decapod and does not belong
to any network other than the one used by Decapod to SSH on the machine.

Creating a playbook configuration supports optional hints. Hints are the answers to simple questions understandable
by plugins. With hints, you can generate more precise configuration. For example, if you set the dmcrypt hint for a
cluster deployment, Decapod will generate the configuration with dmcrypted OSDs.

To see the available hints, use the GET /v1/playbook API endpoint or see Playbook plugins.

See also:

• Playbook execution

Playbook execution

The execution model defines the execution of a playbook configuration. You can run each playbook configuration
several times, and this model defines a single execution. As a result, you receive the execution status (completed,
failed, and others) and the execution log. The execution log can be shown as:

• Execution steps, which are the parsed steps of the execution.

• Raw log, which is a pure Ansible log of the whole execution as is, taken from stdout and stderr.

Each execution step has timestamps (started, finished), ID of the server that issued the event, role and task name of the
event, status of the task, and detailed information on the error, if any.

See also:

• Playbook configuration

14 Chapter 3. Data models

CHAPTER 4

Manage users and roles

This section descibes how to manage users and roles in Decapod through the web UI and contains the following topics:

Manage users

To add a new user:

1. Log in to the Decapod web UI.

2. Navigate to USERS MANAGEMENT.

3. Click the USERS tab.

4. Click CREATE NEW USER and type the required data.

5. Click SAVE. A new user has been created.

Note: The password is sent to the user email. This password can be changed.

After saving the changes, you will see that the CHANGELOG is updated. This CHANGELOG tracks all the results and
it is possible to view the details about a user modifications. This is related not only to the user management. Decapod
stores all changes and you can always obtain the entire log.

Clicking DELETE USER does not delete the user but archives it instead. You can still access the user through the
Decapod CLI if you know the user ID.

Manage roles

The following table describes how to create, edit, and delete roles through the Decapod web UI.

15

Decapod Documentation, Release 0.1.2

Task Steps
Create a new role

1. In the Decapod web UI. Navigate to USERS
MANAGEMENT.

2. Click the ROLES tab.
3. Click CREATE NEW ROLE.
4. Type the role name and select the required per-

missions.
5. Click SAVE CHANGES.

Edit a role
1. In the Decapod web UI, navigate to USERS MAN-

AGEMENT.
2. Click the ROLES tab.
3. Click the pen icon near the required role name and

edit the role as required.

Delete a role
1. In the Decapod web UI, navigate to USERS MAN-

AGEMENT.
2. Click the ROLES tab.
3. Click the trash can icon near the required role

name.

Note: This will not completely delete the role but will
archive it instead. You can access the role through the
Decapod CLI if you know the role ID.

Assign a role to a user
1. In the Decapod web UI, navigate to USERS MAN-

AGEMENT.
2. Click the USERS tab.
3. Expand the required user.
4. Select the required role in the ROLE section.
5. Click SAVE.

See also:

• Role model

16 Chapter 4. Manage users and roles

CHAPTER 5

Deploy a cluster

This section describes the cluster deployment workflow using the Decapod web UI.

The section contains the following topics:

Create a cluster

To create a cluster:

1. Log in to the Decapod web UI.

2. Navigate to CLUSTER.

3. Click CREATE NEW CLUSTER.

4. Type the cluster name and click SAVE.

A new cluster is empty and contains no servers. Discover servers as described in Discover a server.

View servers

Verify that you have discovered the required servers as described in Discover a server.

To view the discovered servers:

1. Log in to the Decapod web UI.

2. Navigate to SERVERS. The SERVERS page lists the servers accessible by Decapod.

3. Expand the required server to view its details.

17

Decapod Documentation, Release 0.1.2

Create a playbook configuration

To create a playbook configuration:

1. Log in to the Decapod web UI.

2. Navigate to PLAYBOOK CONFIGURATION.

3. Click CREATE NEW CONFIGURATION.

4. Type the configuration name and select a cluster, then click NEXT.

5. Select the required playbook and click NEXT.

The table lists the plugins available for execution. Some playbooks require an explicit list of servers. For
example, to purge a cluster, Decapod will use the servers in this cluster and you do not need to specify them
manually.

6. In the SELECT SERVERS window, select all servers and click SAVE CHANGES. Once the new playbook con-
figuration is created, you will see the PLAYBOOK CONFIGURATION window.

7. Edit the playbook configuration, if required, and click SAVE CHANGES.

Execute a playbook configuration

To execute a playbook configuration:

1. In the Decapod web UI, navigate to CONFIGURATIONS.

2. Click EXECUTE to execute the required configuration. Once the execution starts, its state changes to STARTED
on the EXECUTIONS page.

3. To view the execution process, click LOGS.

4. Once the execution is finished, its status will change to COMPLETED. To download the entire execution log,
click DOWNLOAD.

18 Chapter 5. Deploy a cluster

CHAPTER 6

Use the Decapod CLI

This section contains the following topics:

Install the Decapod CLI

To install the Decapod CLI on a local machine, install two packages:

• decapodlib, the RPC client library to access the Decapod API

• decapod-cli, the CLI wrapper for the library

To install the Decapod CLI:

1. At the top level of the source code repository, run the following command to build the packages and place them
to the output/eggs directory:

$ make build_eggs

2. Install the packages:

$ pip install output/eggs/decapodlib*.whl output/eggs/decapod_cli*.whl

3. Run decapod to verify the installation.

See also:

• Access the Decapod CLI

Access the Decapod CLI

To access Decapod, you need to know its URL (http://10.10.0.2:9999 or https://10.10.0.2:10000), your username and
password (root/root for a development installation).

To access Decapod using CLI:

19

http://10.10.0.2:9999
https://10.10.0.2:10000

Decapod Documentation, Release 0.1.2

1. Set your credentials directly to the Decapod CLI or use the environment variables:

export DECAPOD_URL=http://10.10.0.2:9999
export DECAPOD_LOGIN=root
export DECAPOD_PASSWORD=root

Save this to a file and source when required.

2. Verify that it works:

$ decapod -u http://10.10.0.2:9999 -l root -p root user get-all

If you used environment variables, run:

$ decapod user get-all

Cluster deployment workflow

This section describes the cluster deployment workflow and contains the following topics:

Create a cluster

To create a cluster:

1. Verify that you can log in to the Decapod using CLI.

2. To create a cluster, run:

$ decapod cluster create <CUSTER_NAME>

Example:

$ decapod cluster create ceph
{

"data": {
"configuration": {},
"name": "ceph"

},
"id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
"initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
"model": "cluster",
"time_deleted": 0,
"time_updated": 1479902503,
"version": 1

}

As a result, a new cluster with the name ceph and ID f2621e71-76a3-4e1a-8b11-fa4ffa4a6958
has been created. This ID is required for creating the playbook configuration.

3. Proceed to Discover a server.

Discover a server

To discover a server:

20 Chapter 6. Use the Decapod CLI

Decapod Documentation, Release 0.1.2

1. Generate the user-data configuration for cloud-init. For details, see Generate user data.

The cloud-init execution generates the content of /etc/rc.local. The first and next reboots will
call the Decapod API for server registering. Such registration is an idempotent operation. The execution of
the Decapod API (POST /v1/server) creates a task for the controller server on facts discovery. The controller
executes this task and collects facts from the remote host. A new server model is created or the information on
the existing one is updated.

2. With this configuration, deploy an operating system on a Ceph node. For an example of such deployment, see:
Deploy an operating system on a Ceph node, official cloud-init documentation, or use kernel parameters.

As a result, the server should be listed in Decapod. The server discovery takes time because of cloud-init.
Therefore, the server may appear in five minutes after deployment. Once the server appears in Decapod, the tool can
use it.

See also:

• Server model

Create a playbook configuration

To create a playbook configuration:

1. List the existing playbooks:

$ decapod playbook get-all
{

"items": [
{

"description": "Adding new OSD to the cluster.\n\nThis plugin adds
→˓OSD to the existing cluster.",

"id": "add_osd",
"name": "Add OSD to Ceph cluster",
"required_server_list": true

},
{

"description": "Ceph cluster deployment playbook.\n\nThis plugin
→˓deploys Ceph cluster into a set of servers. After sucessful\ndeployment,
→˓cluster model will be updated.",

"id": "cluster_deploy",
"name": "Deploy Ceph cluster",
"required_server_list": true

},
{

"description": "Example plugin for playbook.\n\nThis plugin deploys
→˓simple hello world service on remote machine If\nremote machine host is
→˓'hostname', \

then http://hostname:8085 will\nrespond with '{\"result\": \"ok\"}'
→˓JSON.",

"id": "hello_world",
"name": "Hello World",
"required_server_list": false

},
{

"description": "Purge whole Ceph cluster.\n\nThis plugin purges whole
→˓Ceph cluster. It removes packages, all data,\nreformat Ceph devices.",

"id": "purge_cluster",
"name": "Purge cluster",
"required_server_list": false

6.3. Cluster deployment workflow 21

http://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://github.com/number5/cloud-init/blob/master/doc/sources/kernel-cmdline.txt

Decapod Documentation, Release 0.1.2

},
{

"description": "Remove OSD host from cluster.",
"id": "remove_osd",
"name": "Remove OSD host from Ceph cluster",
"required_server_list": true

}
]

}

This will list the available playbooks in details. The name and description are the human-readable items
to display in the Decapod UI.

2. Note the ID of the Ceph cluster deployment playbook. It is cluster_deploy in the example above.

3. The cluster deployment playbook requires a list of servers to operate with (field required_server_list
is true). To list the available servers:

$ decapod server get-all

Note: The output of this command can be quite long. Therefore, we recommend that you use a tool for listing.
One of the best tools available to work with JSON in CLI is jq.

4. Obtain the required server IDs:

• Extract the IDs manually

• Use compact listing:

$ decapod server get-all --compact
"machine_id","version","fqdn","username","default_ip","interface=mac=ipv4=ipv6
→˓","..."
"015fd324-4437-4f28-9f4b-7e3a90bdc30f","1","chief-gull.maas","ansible","10.10.
→˓0.9","ens3=52:54:00:29:14:22=10.10.0.9=fe80::5054:ff:fe29:1422"
"7e791f07-845e-4d70-bff1-c6fad6bfd7b3","1","exotic-swift.maas","ansible","10.
→˓10.0.11","ens3=52:54:00:05:b0:54=10.10.0.11=fe80::5054:ff:fe05:b054"
"70753205-3e0e-499d-b019-bd6294cfbe0f","1","helped-pig.maas","ansible","10.10.
→˓0.12","ens3=52:54:00:01:7c:1e=10.10.0.12=fe80::5054:ff:fe01:7c1e"
"40b96868-205e-48a2-b8f6-3e3fcfbc41ef","1","joint-feline.maas","ansible","10.
→˓10.0.10","ens3=52:54:00:4a:c3:6d=10.10.0.10=fe80::5054:ff:fe4a:c36d"
"8dd33842-fee6-4ec7-a1e5-54bf6ae24710","1","polite-rat.maas","ansible","10.10.
→˓0.8","ens3=52:54:00:d4:da:29=10.10.0.8=fe80::5054:ff:fed4:da29"

Where machine_id is the server ID.

• Use the jq tool mentioned above:

$ decapod server get-all | jq -rc '.[]|.id'
015fd324-4437-4f28-9f4b-7e3a90bdc30f
7e791f07-845e-4d70-bff1-c6fad6bfd7b3
70753205-3e0e-499d-b019-bd6294cfbe0f
40b96868-205e-48a2-b8f6-3e3fcfbc41ef
8dd33842-fee6-4ec7-a1e5-54bf6ae24710

Note: We recommend using the jq tool as the compact representation shows only a limited amount of infor-
mation. Using jq allows you to extract any certain data.

22 Chapter 6. Use the Decapod CLI

https://stedolan.github.io/jq/

Decapod Documentation, Release 0.1.2

5. At this step you should have all the required data to create a playbook configuration:

• The cluster name (can be any)

• The playbook name

• The cluster ID

• The server IDs

6. Create a playbook configuration using the following command:

$ decapod playbook-configuration create <NAME> <PLAYBOOK> <CLUSTER_ID> [SERVER_
→˓IDS]...

Example:

$ decapod playbook-configuration create deploy cluster_deploy f2621e71-76a3-4e1a-
→˓8b11-fa4ffa4a6958 015fd324-4437-4f28-9f4b-7e3a90bdc30f \
7e791f07-845e-4d70-bff1-c6fad6bfd7b3 70753205-3e0e-499d-b019-bd6294cfbe0f
→˓40b96868-205e-48a2-b8f6-3e3fcfbc41ef 8dd33842-fee6-4ec7-a1e5-54bf6ae24710
{

"data": {
"cluster_id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
"configuration": {

"global_vars": {
"ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/

→˓decapod_common/facts/ceph_facts_module.py.j2",
"ceph_stable": true,
"ceph_stable_distro_source": "jewel-xenial",
"ceph_stable_release": "jewel",
"ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/

→˓apt",
"cluster": "ceph",
"cluster_network": "10.10.0.0/24",
"copy_admin_key": true,
"fsid": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
"journal_collocation": true,
"journal_size": 100,
"max_open_files": 131072,
"nfs_file_gw": false,
"nfs_obj_gw": false,
"os_tuning_params": [

{
"name": "fs.file-max",
"value": 26234859

},
{

"name": "kernel.pid_max",
"value": 4194303

}
],
"public_network": "10.10.0.0/24"

},
"inventory": {

"_meta": {
"hostvars": {

"10.10.0.10": {
"ansible_user": "ansible",
"devices": [

6.3. Cluster deployment workflow 23

Decapod Documentation, Release 0.1.2

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

},
"10.10.0.11": {

"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

},
"10.10.0.12": {

"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

},
"10.10.0.8": {

"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

},
"10.10.0.9": {

"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

}
}

},
"clients": [],
"iscsi_gw": [],
"mdss": [],
"mons": [

"10.10.0.9"
],
"nfss": [],
"osds": [

"10.10.0.10",

24 Chapter 6. Use the Decapod CLI

Decapod Documentation, Release 0.1.2

"10.10.0.12",
"10.10.0.11",
"10.10.0.8"

],
"rbd_mirrors": [],
"restapis": [

"10.10.0.9"
],
"rgws": []

}
},
"name": "deploy",
"playbook_id": "cluster_deploy"

},
"id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
"initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
"model": "playbook_configuration",
"time_deleted": 0,
"time_updated": 1479906402,
"version": 1

}

Where the playbook configuration ID is fd499a1e-866e-4808-9b89-5f582c6bd29e.

Update a playbook configuration

You may need to update a playbook configuration, for example, to use another host for the monitor.

To do so, update the playbook model using one of the following ways:

• Edit the playbook and send to stdin of the decapod playbook-configuration
update fd499a1e-866e-4808-9b89-5f582c6bd29e command where
fd499a1e-866e-4808-9b89-5f582c6bd29e is the playbook configuration ID.

• Run an external editor with the --model-editor option. Using this option, the Decapod CLI downloads the
model and sends its data field to the editor. After you save and close the editor, the updated model is sent to the
Decapod API. To use this model, verify that your editor is set using the env | grep EDITOR command.

• Dump JSON with modifications and inject into the --model option.

Important: Avoid updating fields outside of the data field (that is why the --model-editor option shows
only the data field). Sending the whole model back to the Decapod API allows keeping consistent behavior of the
Decapod API.

To update a playbook configuration:

1. Run the decapod playbook-configuration update command with the --model-editor flag.

Example:

$ decapod playbook-configuration update fd499a1e-866e-4808-9b89-5f582c6bd29e --
→˓model-editor
{

"data": {
"cluster_id": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
"configuration": {

"global_vars": {

6.3. Cluster deployment workflow 25

Decapod Documentation, Release 0.1.2

"ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/
→˓decapod_common/facts/ceph_facts_module.py.j2",

"ceph_stable": true,
"ceph_stable_distro_source": "jewel-xenial",
"ceph_stable_release": "jewel",
"ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/

→˓apt",
"cluster": "ceph",
"cluster_network": "10.10.0.0/24",
"copy_admin_key": true,
"fsid": "f2621e71-76a3-4e1a-8b11-fa4ffa4a6958",
"journal_collocation": true,
"journal_size": 100,
"max_open_files": 131072,
"nfs_file_gw": false,
"nfs_obj_gw": false,
"os_tuning_params": [

{
"name": "fs.file-max",
"value": 26234859

},
{

"name": "kernel.pid_max",
"value": 4194303

}
],
"public_network": "10.10.0.0/24"

},
"inventory": {

"_meta": {
"hostvars": {

"10.10.0.10": {
"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

},
"10.10.0.11": {

"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

},
"10.10.0.12": {

"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

26 Chapter 6. Use the Decapod CLI

Decapod Documentation, Release 0.1.2

],
"monitor_interface": "ens3"

},
"10.10.0.8": {

"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

},
"10.10.0.9": {

"ansible_user": "ansible",
"devices": [

"/dev/vdc",
"/dev/vde",
"/dev/vdd",
"/dev/vdb"

],
"monitor_interface": "ens3"

}
}

},
"clients": [],
"iscsi_gw": [],
"mdss": [],
"mons": [

"10.10.0.8"
],
"nfss": [],
"osds": [

"10.10.0.10",
"10.10.0.12",
"10.10.0.11",
"10.10.0.9"

],
"rbd_mirrors": [],
"restapis": [

"10.10.0.8"
],
"rgws": []

}
},
"name": "deploy",
"playbook_id": "cluster_deploy"

},
"id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
"initiator_id": "7e47d3ff-3b2e-42b5-93a2-9bd2601500d7",
"model": "playbook_configuration",
"time_deleted": 0,
"time_updated": 1479907354,
"version": 2

}

The example above shows replacing 10.10.0.9 in mons/restapis and adding it to the OSD list, and
also placing the 10.10.0.8 from OSDs to mons/restapis. As a result, the playbook configuration ID is

6.3. Cluster deployment workflow 27

Decapod Documentation, Release 0.1.2

fd499a1e-866e-4808-9b89-5f582c6bd29e and the version is 2.

2. Save your changes and exit the editor. Proceed to Execute a playbook configuration.

Execute a playbook configuration

To execute a playbook configuration:

1. Run decapod execution create with the playbook configuration ID and version.

Example:

$ decapod execution create fd499a1e-866e-4808-9b89-5f582c6bd29e 2
{

"data": {
"playbook_configuration": {

"id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
"version": 2

},
"state": "created"

},
"id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"initiator_id": null,
"model": "execution",
"time_deleted": 0,
"time_updated": 1479908503,
"version": 1

}

Once done, the playbook configuration is in the created state. It takes some time for the execution to start.

2. To verify that the execution has started, use the decapod execution get command with the execution
ID.

Example:

$ decapod execution get f2fbb668-6c89-42d2-9251-21e0b79ae973
{

"data": {
"playbook_configuration": {

"id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
"version": 2

},
"state": "started"

},
"id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"initiator_id": null,
"model": "execution",
"time_deleted": 0,
"time_updated": 1479908503,
"version": 2

}

Once completed, the execution state will turn to completed.

Additionally, you can perform the following actions:

• Track the execution steps using the decapod execution steps command with the execution ID.

Example:

28 Chapter 6. Use the Decapod CLI

Decapod Documentation, Release 0.1.2

$ decapod execution steps f2fbb668-6c89-42d2-9251-21e0b79ae973
[

{
"data": {

"error": {},
"execution_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"name": "add custom repo",
"result": "skipped",
"role": "ceph.ceph-common",
"server_id": "8dd33842-fee6-4ec7-a1e5-54bf6ae24710",
"time_finished": 1479908609,
"time_started": 1479908609

},
"id": "58359d01b3670f0089d9330b",
"initiator_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"model": "execution_step",
"time_deleted": 0,
"time_updated": 1479908609,
"version": 1

},
{

"data": {
"error": {},
"execution_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"name": "add gluster nfs ganesha repo",
"result": "skipped",
"role": "ceph.ceph-common",
"server_id": "8dd33842-fee6-4ec7-a1e5-54bf6ae24710",
"time_finished": 1479908609,
"time_started": 1479908609

},
"id": "58359d01b3670f0089d9330c",
"initiator_id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"model": "execution_step",
"time_deleted": 0,
"time_updated": 1479908609,
"version": 1

}
]

• View the execution history using the decapod execution get-version-all command with the exe-
cution ID.

Example:

$ decapod execution get-version-all f2fbb668-6c89-42d2-9251-21e0b79ae973
[

{
"data": {

"playbook_configuration": {
"id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
"version": 2

},
"state": "completed"

},
"id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"initiator_id": null,
"model": "execution",

6.3. Cluster deployment workflow 29

Decapod Documentation, Release 0.1.2

"time_deleted": 0,
"time_updated": 1479909342,
"version": 3

},
{

"data": {
"playbook_configuration": {

"id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
"version": 2

},
"state": "started"

},
"id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"initiator_id": null,
"model": "execution",
"time_deleted": 0,
"time_updated": 1479908503,
"version": 2

},
{

"data": {
"playbook_configuration": {

"id": "fd499a1e-866e-4808-9b89-5f582c6bd29e",
"version": 2

},
"state": "created"

},
"id": "f2fbb668-6c89-42d2-9251-21e0b79ae973",
"initiator_id": null,
"model": "execution",
"time_deleted": 0,
"time_updated": 1479908503,
"version": 1

}
]

• Once the execution is done, view the entire execution log using the decapod execution log command
with the execution ID.

Example:

$ decapod execution log f2fbb668-6c89-42d2-9251-21e0b79ae973
Using /etc/ansible/ansible.cfg as config file
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/./checks/check_mandatory_vars.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/./release.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/facts.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/deploy_monitors.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/start_monitor.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/ceph_keys.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/openstack_config.yml

30 Chapter 6. Use the Decapod CLI

Decapod Documentation, Release 0.1.2

statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/create_mds_filesystems.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/secure_cluster.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/./docker/main.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/docker/checks.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/docker/pre_requisite.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/docker/dirs_permissions.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/docker/create_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/docker/fetch_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/docker/selinux.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/docker/start_docker_monitor.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/docker/copy_configs.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-mon/tasks/calamari.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-agent/tasks/pre_requisite.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph-agent/tasks/start_agent.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/./checks/check_mandatory_vars.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/./release.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/facts.yml
statically included: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-
→˓ansible/roles/ceph.ceph-common/tasks/./checks/check_system.yml

...

TASK [ceph-restapi : run the ceph rest api docker image] ***********************
task path: /usr/local/lib/python2.7/dist-packages/decapod_ansible/ceph-ansible/
→˓roles/ceph-restapi/tasks/docker/start_docker_restapi.yml:2
skipping: [10.10.0.8] => {"changed": false, "skip_reason": "Conditional check
→˓failed", "skipped": true}

PLAY [rbdmirrors] **
skipping: no hosts matched

PLAY [clients] ***
skipping: no hosts matched

PLAY [iscsigws] **
skipping: no hosts matched

PLAY RECAP ***
10.10.0.10 : ok=61 changed=12 unreachable=0 failed=0

6.3. Cluster deployment workflow 31

Decapod Documentation, Release 0.1.2

10.10.0.11 : ok=60 changed=12 unreachable=0 failed=0
10.10.0.12 : ok=60 changed=12 unreachable=0 failed=0
10.10.0.8 : ok=90 changed=19 unreachable=0 failed=0
10.10.0.9 : ok=60 changed=12 unreachable=0 failed=0

32 Chapter 6. Use the Decapod CLI

CHAPTER 7

Deploy an operating system on a Ceph node

Warning: Decapod does not perform bare metal provisioning, OS deployment, and network setup. Perform these
operations by external means.

The OS must support cloud-init. Also, it must be possible to run your own user data. For the available datasources
for cloud-init, see Datasources. Alternatively, you can set user data using the kernel command line. For bare metal
provisioning, try MAAS. This section covers the MAAS installation and OS deployment with this tool.

The section contains the following topics:

Generate user data for cloud-init

This section contains the following topics:

Prerequisites

Prior to generating the user data for cloud-init, complete the following steps:

1. Verify that your Decapod installation is up and running.

2. Obtain the server discovery token. Decapod uses automatic server discovery and cloud-init is required
only for that. To access the Decapod API, servers will access it using an authentication token with limited
capabilities (posting to the server discovery API endpoint). The server discovery token is set in the api.
server_discovery_token section of the config.yaml file. Keep this token private. To obtain the
token:

$ grep server_discovery_token config.yaml
server_discovery_token: "7f080dab-d803-4339-9c69-e647f7d6e200"

3. Generate an SSH public key. To generate the SSH public key from a private one, run:

33

http://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://github.com/number5/cloud-init/blob/master/doc/sources/kernel-cmdline.txt

Decapod Documentation, Release 0.1.2

$ ssh-keygen -y -f ansible_ssh_keyfile.pem > ansible_ssh_keyfile.pem.pub

Note: The ansible_ssh_keyfile.pem file should have the 0600 permissions:

$ chmod 0600 ansible_ssh_keyfile.pem

Generate user data

Verify that you have completed the steps described in Prerequisites.

To generate user data:

Run the following command:

$ decapod -u http://10.10.0.2:9999 cloud-config \
7f080dab-d803-4339-9c69-e647f7d6e200 ansible_ssh_keyfile.pem.pub

Where the URL is the public URL of the Decapod machine with a correct port. The servers will send an HTTP request
for server discovery using this URL. As a result, you will obtain a YAML-like user data.

MAAS requires user-data config to be BASE64 encoded. You can do that with:

$ decapod -u http://10.10.0.2:9999 cloud-config \
7f080dab-d803-4339-9c69-e647f7d6e200 ansible_ssh_keyfile.pem.pub \

| base64 -w 0

-w in base64 means line wrapping. We need to disable it.

Deploy OS using MAAS

MAAS deployment is not part of this product. Therefore, we cannot guarantee its robustness. To provision your Ceph
nodes manually, skip this section.

The section contains the following topics:

Prerequisites

MAAS installation has the following requirements:

• MAAS has its own DHCP server. To avoid collisions, disable the default one.

• If you plan to run MAAS in a virtual network with libvirt, create a new network with disabled DHCP, but
enabled NAT.

Install MAAS

To install MAAS:

To install MAAS, follow the steps described in:

1. Installing a single node MAAS.

34 Chapter 7. Deploy an operating system on a Ceph node

https://maas.ubuntu.com/docs/install.html#installing-a-single-node-maas

Decapod Documentation, Release 0.1.2

2. Importing the boot images.

3. Logging in.

Deploy an OS using MAAS

To deploy an operating system using MAAS:

1. Encode the user data to base64 and send it to MAAS:

$ decapod -u http://10.10.0.2:9999 cloud-config \
7f080dab-d803-4339-9c69-e647f7d6e200 ansible_ssh_keyfile.pem.pub \
| base64 -w 0 > user_data.txt

2. Deploy an OS using the required MAAS version.

Note: MAAS 2.0 has non-backward-compatible API changes.

• MAAS 2.0:

(a) Obtain system_id of the machine to deploy:

$ maas mymaas nodes read

(b) Deploy the OS:

$ maas mymaas machine deploy {system_id} user_data={base64-encoded of
→˓user-data}

Where mymaas is the profile name of the MAAS command line.

• MAAS prior to 2.0:

(a) Obtain system_id of the machine to deploy:

$ maas prof nodes list

(b) Deploy the OS:

$ maas mymaas node start {system_id} user_data={base64-encoded of user-
→˓data} distro_series={distro series. Eg. trusty}

Where mymaas is the profile name of the MAAS command line.

7.2. Deploy OS using MAAS 35

https://maas.ubuntu.com/docs/install.html#import-the-boot-images
https://maas.ubuntu.com/docs/maascli.html#logging-in

Decapod Documentation, Release 0.1.2

36 Chapter 7. Deploy an operating system on a Ceph node

CHAPTER 8

Supported Ceph packages

Mirantis provides its own Ceph packages with a set of patches that are not included in the community yet but are crucial
for customers and internal needs. The supported LTS release of Ceph is Jewel. And the only supported distribution is
16.04 Xenial Xerus.

Mirantis keeps the patches as minimal and non-intrusive as possible and tracks the community releases as close as rea-
sonable. To publish an urgent fix, intermediate releases can be issued. The packages are available from the following
APT repository

deb http://mirror.fuel-infra.org/decapod/ceph/jewel-xenial jewel-xenial main

The following table lists packages provided for upgrades only:

Ceph
release

Ubuntu
release

APT repository

Jewel 14.04 deb
http://mirror.fuel-infra.org/decapod/ceph/jewel-trusty
jewel-trusty main

Hammer
(0.94.x)

14.04 deb
http://mirror.fuel-infra.org/decapod/ceph/hammer-trusty
hammer-trusty main

Hammer
(0.94.x)

12.04 deb
http://mirror.fuel-infra.org/decapod/ceph/hammer-precise
hammer-precise main

Firefly 14.04 deb
http://mirror.fuel-infra.org/decapod/ceph/firefly-trusty
firefly-trusty main

Firefly 12.04 deb http://mirror.fuel-infra.org/decapod/ceph/
firefly-precise firefly-precise
main

Important: Packages for old LTS releases and Jewel for Ubuntu 14.04 are intended for upgrade purposes only and
are not maintained other than fixing bugs hindering the upgrade to Jewel and Ubuntu 16.04.

37

http://docs.ceph.com/docs/master/release-notes/#v10-2-0-jewel
http://docs.ceph.com/docs/master/release-notes/#v0-94-hammer
http://docs.ceph.com/docs/master/release-notes/#v0-80-firefly

Decapod Documentation, Release 0.1.2

38 Chapter 8. Supported Ceph packages

CHAPTER 9

Playbook plugins

Decapod performs Ceph management through plugins. These plugins support different tasks, such as cluster deploy-
ment, adding and removing of OSDs, and so on. This section describes the available playbook plugins and the main
options these plugins support.

The section contains the following topics:

Deploy Ceph cluster

The Deploy Ceph cluster playbook plugin allows you to deploy an initial Ceph cluster. The plugin supports all the
capabilities and roles of ceph-ansible.

Note: The majority of configuration options described in this section match the ceph-ansible settings. For a list
of supported parameters, see official list.

The section contains the following topics:

Overview

The following table shows the general information about the Deploy Ceph cluster plugin:

Property Value
ID cluster_deploy
Name Deploy Ceph Cluster
Required Server List Yes

The Deploy Ceph cluster plugin is tightly coupled with ceph-ansible versions. The following table shows the
mapping between the plugin version and the corresponding version of ceph-ansible.

Plugin version ceph-ansible version
>=0.1,<0.2 v1.0.8

39

https://github.com/ceph/ceph-ansible/blob/master/group_vars/all.yml.sample
https://github.com/ceph/ceph-ansible/tree/v1.0.8

Decapod Documentation, Release 0.1.2

Parameters and roles

The Deploy Ceph cluster plugin has the following parameters:

ceph_facts_template The path to custom Ceph facts template. Decapod deploys the custom facts module on
the nodes that collect the Ceph-related facts. Usually, you do not need to configure this parameter.

ceph_stable Set to true if it is required to install Ceph from the stable repository.

ceph_stable_repo, ceph_stable_release, ceph_stable_distro_source The options define the
repository where to obtain Ceph. In case of Ubuntu Xenial, you will get the following repository string:

deb {{ ceph_stable_repo }} {{ ceph_stable_distro_source }} main

cluster Defines the cluster name.

Important: Some tools require the ceph cluster name only. The default name allows executing the ceph
utility without an explicit cluster name and with the --cluster option.

cluster_network Defines the cluster network.

copy_admin_key Copies the admin key to all nodes. This is required if you want to run the ceph utility from any
cluster node. Keep this option as true. Otherwise, it may break some playbooks that maintain the lifecycle
after deployment.

fsid The unique identifier for your object store. Since you can run multiple clusters on the same hardware, you must
specify the unique ID of the object store when bootstrapping a monitor.

journal_collocation Defines if the OSD will place its journal on the same disk with the data. It is false by
default.

If you want to have separate disks for journals (SSDs) and data (rotationals), set this to false. Also, set
raw_multi_journal to true and list journal disks as raw_journal_devices.

raw_multi_journal This option is the opposite to journal_collocation.

Note: The raw_multi_journal and journal_collocation options must have different values. For
example, if journal_collocation is set to true, set raw_multi_journal to false.

dmcrypt_journal_collocation This option has the same meaning as journal_collocation but both
journal and data disks are encrypted by dmcrypt.

dmcrypt_dedicated_journal This option has the same meaning as journal_collocation set to
false. If dmcrypt_dedicated_journal is set to true, the journal and data will be placed on dif-
ferent disks and encrypted with dmcrypt.

journal_size OSD journal size in megabytes.

max_open_files Sets the number of open files to have on a node.

nfs_file_gw Set to true to enable file access through NFS. Requires an MDS role.

nfs_obj_gw Set to true to enable object access through NFS. Requires an RGW role.

os_tuning_params Different kernels parameters. This is the list of dicts where name is the name of the parameter
and value is the value.

public_network Defines the public network.

monitor_interface The option defines the NIC on the host that is connected to the public network.

40 Chapter 9. Playbook plugins

http://docs.ceph.com/docs/jewel/rados/configuration/network-config-ref/
http://docs.ceph.com/docs/jewel/rados/configuration/network-config-ref

Decapod Documentation, Release 0.1.2

devices Defines the disks where to place the OSD data. If collocation is enabled, then journal devices,
raw_journal_devices, are not used.

raw_journal_devices Defines the disks where to place the journals for OSDs. If collocation is enabled, this
option is not used.

ceph-ansible supports two deployment modes: with journal collocation and on separate drives, and also with
dmcrypt and without. Therefore, there are four possible combinations.

The following table lists the possible combinations:

Col-
lo-
ca-
tion

Dm-
crypt

journal_collocationraw_multi_journaldmcrypt_journal_collocationdmcrypt_dedicated_journalData
devices
option
name

Journal
devices
option name

true true false true false false devices –
true falsetrue false false false devices –
false true false false false true devices raw_journal_devices
false falsefalse true false false devices raw_journal_devices

Consider the different meaning of devices and raw_journal_devices in different modes: if no collocation is
defined, then devices means disks with data. Journals are placed on raw_journal_devices disks. Otherwise,
define devices only. In this case, the journal will be placed on the same device as the data.

Configuration example

The following is an example of the Deploy Ceph cluster plugin configuration:

{
"global_vars": {
"ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/decapod_common/

→˓facts/ceph_facts_module.py.j2",
"ceph_stable": true,
"ceph_stable_distro_source": "jewel-xenial",
"ceph_stable_release": "jewel",
"ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
"cluster": "ceph",
"cluster_network": "10.10.0.0/24",
"copy_admin_key": true,
"dmcrypt_dedicated_journal": true,
"dmcrypt_journal_collocation": false,
"fsid": "e0b82a0d-b669-4787-8f4d-84f6733e45cd",
"journal_collocation": false,
"journal_size": 512,
"max_open_files": 131072,
"nfs_file_gw": false,
"nfs_obj_gw": false,
"os_tuning_params": [

{
"name": "kernel.pid_max",
"value": 4194303

},
{

"name": "fs.file-max",
"value": 26234859

}
],
"public_network": "10.10.0.0/24",

9.1. Deploy Ceph cluster 41

Decapod Documentation, Release 0.1.2

"raw_multi_journal": false
},
"inventory": {
"_meta": {

"hostvars": {
"10.10.0.10": {
"ansible_user": "ansible",
"devices": [
"/dev/vde",
"/dev/vdb"

],
"monitor_interface": "ens3",
"raw_journal_devices": [

"/dev/vdd",
"/dev/vdc"

]
},
"10.10.0.11": {
"ansible_user": "ansible",
"devices": [

"/dev/vde",
"/dev/vdb"

],
"monitor_interface": "ens3",
"raw_journal_devices": [

"/dev/vdd",
"/dev/vdc"

]
},
"10.10.0.12": {
"ansible_user": "ansible",
"devices": [

"/dev/vde",
"/dev/vdb"

],
"monitor_interface": "ens3",
"raw_journal_devices": [

"/dev/vdd",
"/dev/vdc"

]
},
"10.10.0.8": {
"ansible_user": "ansible",
"devices": [

"/dev/vde",
"/dev/vdb"

],
"monitor_interface": "ens3",
"raw_journal_devices": [

"/dev/vdd",
"/dev/vdc"

]
},
"10.10.0.9": {
"ansible_user": "ansible",
"devices": [

"/dev/vde",
"/dev/vdb"

42 Chapter 9. Playbook plugins

Decapod Documentation, Release 0.1.2

],
"monitor_interface": "ens3",
"raw_journal_devices": [

"/dev/vdd",
"/dev/vdc"

]
}

}
},
"clients": [],
"iscsi_gw": [],
"mdss": [],
"mons": [

"10.10.0.9"
],
"nfss": [],
"osds": [

"10.10.0.10",
"10.10.0.12",
"10.10.0.11",
"10.10.0.8"

],
"rbd_mirrors": [],
"restapis": [

"10.10.0.9"
],
"rgws": []

}
}

Add OSD host

The Add OSD host playbook plugin allows you to add a new host with OSDs to a cluster. The plugin supports all the
capabilities and roles of ceph-ansible.

Note: The majority of configuration options described in this section match the ceph-ansible settings. For a list
of supported parameters, see official list.

The section contains the following topics:

Overview

The following table shows the general information about the Add OSD host plugin:

Property Value
ID add_osd
Name Add OSD Host
Required Server List Yes

The Add OSD host plugin is tightly coupled with ceph-ansible versions. The following table shows the mapping
between the plugin version and the corresponding version of ceph-ansible.

9.2. Add OSD host 43

https://github.com/ceph/ceph-ansible/blob/master/group_vars/osds.yml.sample

Decapod Documentation, Release 0.1.2

Plugin version ceph-ansible version
>=0.1,<0.2 v1.0.8

Parameters and roles

The Add OSD host plugin parameters are mostly the same as the ones for the Deploy Ceph cluster plugin. However,
the plugin has the following roles:

mons Defines the nodes to deploy monitors.

osds Defines the nodes to deploy OSDs.

Configuration example

The following is an example of the Add OSD host plugin configuration:

{
"data": {

"cluster_id": "1597a71f-6619-4db6-9cda-a153f4f19097",
"configuration": {

"global_vars": {
"ceph_facts_template": "/usr/local/lib/python3.5/dist-packages/shrimp_

→˓common/facts/ceph_facts_module.py.j2",
"ceph_stable": true,
"ceph_stable_distro_source": "jewel-xenial",
"ceph_stable_release": "jewel",
"ceph_stable_repo": "http://eu.mirror.fuel-infra.org/shrimp/ceph/apt",
"cluster": "ceph",
"cluster_network": "10.10.0.0/24",
"copy_admin_key": true,
"fsid": "1597a71f-6619-4db6-9cda-a153f4f19097",
"journal_collocation": true,
"journal_size": 100,
"max_open_files": 131072,
"nfs_file_gw": false,
"nfs_obj_gw": false,
"os_tuning_params": [

{
"name": "kernel.pid_max",
"value": 4194303

},
{

"name": "fs.file-max",
"value": 26234859

}
],
"public_network": "10.10.0.0/24"

},
"inventory": {

"_meta": {
"hostvars": {

"10.10.0.2": {
"ansible_user": "ansible",
"devices": [

"/dev/vdb"
],
"monitor_interface": "ens3"

44 Chapter 9. Playbook plugins

https://github.com/ceph/ceph-ansible/tree/v1.0.8

Decapod Documentation, Release 0.1.2

},
"10.10.0.3": {

"ansible_user": "ansible",
"devices": [

"/dev/vdb"
],
"monitor_interface": "ens3"

}
}

},
"mons": [

"10.10.0.2"
],
"osds": [

"10.10.0.3",
],

}
},
"name": "add_osd_name",
"playbook_id": "add_osd"

},
"id": "fd76cea9-3efa-4432-854c-fee30ca79ddb",
"initiator_id": "9d010f3f-2ec0-4079-ae8c-f46415e2530c",
"model": "playbook_configuration",
"time_deleted": 0,
"time_updated": 1478174220,
"version": 2

}

Remove OSD host

The Remove OSD host playbook plugin allows you to remove a host with OSDs from a cluster.

The section contains the following topics:

Overview

The following table shows the general information about the Remove OSD host plugin:

Property Value
ID remove_osd
Name Remove OSD Host
Required Server List Yes

Configuration example

The following is an example of the Remove OSD host plugin configuration:

{
"global_vars": {
"cluster": "ceph"

},
"inventory": {

9.3. Remove OSD host 45

Decapod Documentation, Release 0.1.2

"_meta": {
"hostvars": {

"10.10.0.12": {
"ansible_user": "ansible"

},
"10.10.0.9": {
"ansible_user": "ansible"

}
}

},
"mons": [

"10.10.0.9"
],
"osds": [

"10.10.0.12"
]

}
}

This playbook has the simplest possible configuration. You only need to define the monitors and the OSD to remove.

Purge cluster

The Purge cluster playbook plugin allows you to remove a host with OSDs from a cluster.

The section contains the following topics:

Overview

The following table shows the general information about the Purge cluster plugin:

Property Value
ID purge_cluster
Name Purge Cluster
Required Server List No

Parameters and roles

The Purge cluster plugin has the following parameter:

cluster Defines the name of the cluster.

Important: Some tools require the ceph cluster name only. The default name allows executing the ceph utility
without an explicit cluster name and with the --cluster option.

Configuration example

The following is an example of the Purge cluster plugin configuration:

46 Chapter 9. Playbook plugins

Decapod Documentation, Release 0.1.2

{
"global_vars": {
"cluster": "ceph"

},
"inventory": {
"_meta": {

"hostvars": {
"10.10.0.10": {
"ansible_user": "ansible"

},
"10.10.0.11": {
"ansible_user": "ansible"

},
"10.10.0.12": {
"ansible_user": "ansible"

},
"10.10.0.8": {
"ansible_user": "ansible"

},
"10.10.0.9": {
"ansible_user": "ansible"

}
}

},
"mons": [

"10.10.0.9"
],
"osds": [

"10.10.0.10",
"10.10.0.12",
"10.10.0.11",
"10.10.0.8"

],
"restapis": [

"10.10.0.9"
]

}
}

This playbook has the simplest possible configuration. You only need to define the nodes and their roles.

9.4. Purge cluster 47

Decapod Documentation, Release 0.1.2

48 Chapter 9. Playbook plugins

Index

D
Decapod CookBook, 1

49

	Introduction
	Install and configure Decapod
	Data models
	Manage users and roles
	Deploy a cluster
	Use the Decapod CLI
	Deploy an operating system on a Ceph node
	Supported Ceph packages
	Playbook plugins

